
Announcements

• “midterm one” now posted soon
– This “midterm” is no different in format from the assignments so far

• K&F chapter 3 has been posted

Independence in graphs and distributions

• A probability distribution (e.g., from your model) has 
certain conditional independence in its variables

• Our graphs also imply such independence assertions

• For distributions that factor as directed graphs
– We can use d-Separation to ask if any particular one is true 
– We can list local ones using the rule to get 

For each Xi  : Xi ! NonDescendents Xi( )! !Parents Xi( )
  Il G( )  

I G( )

Independence in graphs and distributions

• An independence assertion could be true for some 
probability distributions that factor according to a graph, 
but we are referring to those that are always true. 

• The local independence properties are equivalent to the 
factorization (one derives the other, see K&F, chapter 3)

• We can have independence properties that are not in        
but can be found by d-separation

  Il G( )

   Il G( )! I G( )      (sometimes strict subset)

Independence in graphs and distributions

Difficulty Intelligence

SATGrade

Letter

Does d-separation say D and I are c.i. given L?
Does d-separation say G and S are c.i. given I?
Does d-separation say S and L are c.i. given I?

Do the local independencies agree? 



Interesting questions

Chain rule says yes 

Case study of three nodes says no 

TBA

• Does every probability distribution have a corresponding 
Bayesian network?

• Given the independence structure of a probability distribution, 
and a graph that captures them all (I(G)=I(P), is the 
corresponding graph unique (ignoring isomorphisms)? 

• Do our graphs faithfully capture the independence structure of 
our distributions? 

Back to case one

a c b

• Let a=“smokes”, c=“high blood pressure”, b=“stroke”
• p(c|a) tells you the probability of having high blood pressure 

if you smoke (for some definition of each).  
 

Can we distinguish case two from case one?
c

a b

• Let a=“smokes”, c=“high blood pressure”, b=“stroke”
• p(a|c) tells you probability of being a smoker if you have 

high blood pressure (for some definition of each).  
 

Can we distinguish case two from case one?

c

a b

• Data for estimating p(c|a) in first case, and p(a|c) in second case 
cannot tell you which model you should prefer.  
- “Correlation is not causation”

• Causality implied by our generative (ancestral sampling) process 
is about the statistics of the data, not physical causality. 

a c b

p(a,b,c) = p(a)p(c | a)p(b | c) = p(a,c)p(b | c)
p(a,b,c) = p(c)p(a | c)p(b | c) = p(a,c)p(b | c)
(both lead to the testable (a ! b | c)



More on causality

• References
– Koller and Friedman, Chapter 21 which starts on page 1009! 
– Classic book by Pearl, Causality: Models, Reasoning, and Inference, 2000

• A version is available on-line (bayes.cs.ucla.edu/BOOK-99/book-toc.html)

More on causality

• We have been focussed on the joint distribution which is adequate 
(arguably optimal) for answering the queries we have studied

• In particular, we know how distributions over unknowns change 
due to evidence

• For many problems (e.g., computer vision and much of machine 
learning) this is sufficient
– Either causes are obvious or not relevant

More on causality

• Two correlated variables can have multiple equivalent graphs 
hinting at different causal stories able to provide the same joint.
– A causes B
– B causes A
– C causes both A and B
– A and B cause C (and A and B are correlated by explaining away)

• Given a choice, we prefer the Bayes net that also represents our 
causal theory (if we have one)
– More natural, easier to understand, better building block
– Helps tell you determine whether observed statistics are consistent with your 

theory
• (Covered briefly next) 

Intervention

• Two Bayes nets that give the same joint distribution can differ in 
what they say about an intervention.

• We represent an intervention, x, as setting some subset of the 
variables, X, to the value, x, denoted by do(X=x). 
– Example 1: Creating an experimental group that will not smoke
– Example 2: Setting your grade to A by hacking into a computer

• On the surface, this might look like conditioning on X, but it is 
different --- the graph needs to change also
– We need to “mutilate” the graph



Representing Intervention

• Example one (students and grades, again)
– Does observing grade change your belief about SAT?

• Now, suppose we intervene on the Grade random variable
– E.G., we fix it by hacking into the grade computer
– Now does observing grade change your belief about SAT?

Difficulty Intelligence

SATGrade

Letter

Representing Intervention

• The intervention not only conditions on the variable, it cuts 
the links that influence it. This is the mutilated graph. 

Difficulty Intelligence

SATGrade

Letter

Representing Intervention

• Another example --- the student from before with a link 
between SAT and letter. Now we expect that the 
intervention does not entirely explain the letter, but that the 
influence of grade is direct (only). 

Difficulty Intelligence

SATGrade

Letter

Difficulty Intelligence

SATGrade

Letter

Representing Intervention

• Another example --- from Pearl, 2000.
– Consider the intervention of turning the sprinkler “on”  



Representing Intervention

• Representation of the intervention of turning the sprinkler on.

Back to smoking and high blood pressure
c

a b

• a=“smokes”, c=“high blood pressure”, b=“stroke”
• Intervene on c.

• Now the two graphs are distinguishable based on data.

a c b

Back to graphs in general Can graphs capture all independence?

• Do our graphs faithfully capture the independence structure 
of our distributions?

• Recall that

•       

G is an I-map for P if I G( )!  I P( )

In other words, all independence represented in G are true. 
(There could be more independence in P that G does not reveal).

Hence we are asking if  I G( ) ! I P( )
Since I G( )" I P( )  this amounts to asking if I P( )" I G( )



Perfection

G is an P-map for P if I G( ) !  I P( )          (perfect map)

In other words, all independence represented in G are true, and
there are no other independence relations.  

Do all distributions have perfect maps?

A

C

B

D

Perfection may not be attainable

Note no arrows, but a link still 
means some probabilistic relation.

The “misconception” example in K&F (pp. 
82-3), where Alice, Bob, Charles, and 
Debbie study in pairs shown, but A and B 
never work together, nor do C and D. 

A

C

B

D

Perfection may not be attainable

Note no arrows, but a link still 
means some probabilistic relation.

Suppose that we have

A ! B C,D( )
and 

C ! D A,B( )

Now, draw the Bayes net
(have fun!). 

• Does every probability distribution have a corresponding 
Bayesian network?

• Given the independence structure of a probability distribution, 
and a graph that captures them all (I(G)=I(P), is the 
corresponding graph unique (ignoring isomorphisms)? 

• Do our graphs always faithfully capture the independence 
structure of our distributions? 

Interesting questions

Chain rule says yes 

Case study of three nodes says no 

Misconception example says no



Undirected graphical models
• Also referred to as

– Markov Networks
– Markov Random Fields

• Nodes represent (groups of) random variables

• Edges represent probabilistic relations between connected 
nodes.

• We have already seen an example suggestive that arrows 
are not always helpful. 

Undirected graphical models

• The analog to d-separation is simper
– Disjoint sets A and B are independent conditioned on C if all paths 

from nodes in A to nodes in B pass through C.

A

C
B

Here  A ! B C( )   for
all probability distributions
represented by this graph. 

Markov Blanket
• The Markov blanket of a node, X, is a particular set of 

(nearby) nodes B where  
• For directed graphs the Markov blanket is the parents, 

children, and co-parents of X. 
• For undirected graphs this is simply the set of nodes 

connected to X. 

X ! Xi B   for all Xi

xiX X

Undirected graphical models

• Bayes nets where nodes only have one parent are easily 
converted to undirected graphs without changing links. 

• (Discussed in more detail soon)



• Intuitively, for any two nodes, xi and xj, not connected by a 
link, 

• So,

• This suggests that an appropriate factorization should not 
have factors with these (non directly linked) nodes together.

• A group of nodes that are all (fully) connected cannot be 
factored by the above rule. 

Semantics of undirected graphical models

xi ! x j x i, j{ }.

 
p …, xi ,…, x j ,…( ) = p xi x i, j{ }( ) p xj x i, j{ }( ) p x i, j{ }( )

Semantics of undirected graphical models
• So, we add nodes into factors, provided that they are all 

connected. 

• This leads to describing the semantics in terms of maximal 
cliques.
– A clique is fully connected subset of nodes from the graph
– A maximal clique is a clique where no node in the graph can be 

added to it without it ceasing to be a clique. 

– x1

x2

x3

x4

All parwise linked nodes are cliques. For example
x1, x2{ }  is a clique (green). However, it is not a

maximal clique. x2 , x3, x4{ }  is a maximal clique 
(blue). If we add another node (only x1  is left) we 
no longer have a clique. 


