Announcements

• “midterm one” now posted soon
 – This “midterm” is no different in format from the assignments so far

• K&F chapter 3 has been posted

Independence in graphs and distributions

• A probability distribution (e.g., from your model) has certain conditional independence in its variables

• Our graphs also imply such independence assertions

• For distributions that factor as directed graphs
 – We can use d-Separation to ask if any particular one is true \(I(G) \)
 – We can list local ones using the rule to get \(I_i(G) \)
 For each \(X_i : X_i \perp \text{NonDescendants}(X_i) \mid \text{Parents}(X_i) \)

Independence in graphs and distributions

• An independence assertion could be true for some probability distributions that factor according to a graph, but we are referring to those that are always true.

• The local independence properties are equivalent to the factorization (one derives the other, see K&F, chapter 3)

• We can have independence properties that are not in \(I_i(G) \) but can be found by d-separation

\[I_i(G) \subseteq I(G) \] (sometimes strict subset)

Independence in graphs and distributions

Does d-separation say D and I are c.i. given L?
Does d-separation say G and S are c.i. given I?
Does d-separation say S and L are c.i. given I?
Do the local independencies agree?
Interesting questions

- Does every probability distribution have a corresponding Bayesian network?
 Chain rule says yes

- Given the independence structure of a probability distribution, and a graph that captures them all \(I(G) = I(P) \), is the corresponding graph unique (ignoring isomorphisms)?
 Case study of three nodes says no

- Do our graphs faithfully capture the independence structure of our distributions?
 TBA

Can we distinguish case two from case one?

- Let \(a = \text{“smokes”}, c = \text{“high blood pressure”}, b = \text{“stroke”} \)
- \(p(a|c) \) tells you probability of being a smoker if you have high blood pressure (for some definition of each).

Can we distinguish case two from case one?

- Data for estimating \(p(c|a) \) in first case, and \(p(a|c) \) in second case cannot tell you which model you should prefer.
 - “Correlation is not causation”
- Causality implied by our generative (ancestral sampling) process is about the statistics of the data, not physical causality.
More on causality

• References
 – Koller and Friedman, Chapter 21 which starts on page 1009!
 – Classic book by Pearl, Causality: Models, Reasoning, and Inference, 2000
 • A version is available on-line (bayes.cs.ucla.edu/BOOK-99/book-toc.html)

More on causality

• We have been focussed on the joint distribution which is adequate (arguably optimal) for answering the queries we have studied
• In particular, we know how distributions over unknowns change due to evidence
• For many problems (e.g., computer vision and much of machine learning) this is sufficient
 – Either causes are obvious or not relevant

More on causality

• Two correlated variables can have multiple equivalent graphs hinting at different causal stories able to provide the same joint.
 – A causes B
 – B causes A
 – C causes both A and B
 – A and B cause C (and A and B are correlated by explaining away)

• Given a choice, we prefer the Bayes net that also represents our causal theory (if we have one)
 – More natural, easier to understand, better building block
 – Helps tell you determine whether observed statistics are consistent with your theory
 • (Covered briefly next)

Intervention

• Two Bayes nets that give the same joint distribution can differ in what they say about an intervention.
• We represent an intervention, \(x \), as setting some subset of the variables, \(X \), to the value, \(x \), denoted by \(do(X=x) \).
 – Example 1: Creating an experimental group that will not smoke
 – Example 2: Setting your grade to A by hacking into a computer
• On the surface, this might look like conditioning on \(X \), but it is different --- the graph needs to change also
 – We need to “mutilate” the graph
Representing Intervention

- Example one (students and grades, again)
 - Does observing grade change your belief about SAT?
- Now, suppose we intervene on the Grade random variable
 - E.G., we fix it by hacking into the grade computer
 - Now does observing grade change your belief about SAT?

Difficulty
Intelligence
Grade
SAT
Letter

Representing Intervention

- The intervention not only conditions on the variable, it cuts the links that influence it. This is the mutilated graph.

Difficulty
Intelligence
Grade
Letter
SAT

Representing Intervention

- Another example --- the student from before with a link between SAT and letter. Now we expect that the intervention does not entirely explain the letter, but that the influence of grade is direct (only).

Difficulty
Intelligence
Grade
SAT
Letter

Representing Intervention

- Another example --- from Pearl, 2000.
 - Consider the intervention of turning the sprinkler “on”

X1 SEASON
SPRINKLER X3
X2 RAIN
X4 WET
X5 SLIPPERY
Representing Intervention

- Representation of the intervention of turning the sprinkler on.

Back to smoking and high blood pressure

- a="smokes", c="high blood pressure", b="stroke"
- Intervene on c.
- Now the two graphs are distinguishable based on data.

Back to graphs in general

Can graphs capture all independence?

- Do our graphs faithfully capture the independence structure of our distributions?
- Recall that
 \[G \text{ is an I-map for } P \text{ if } I(G) \subseteq I(P) \]

 In other words, all independence represented in G are true.
 (There could be more independence in P that G does not reveal).

- Hence we are asking if \(I(G) \equiv I(P) \)
 Since \(I(G) \subseteq I(P) \) this amounts to asking if \(I(P) \subseteq I(G) \)
Perfection

G is a P-map for P if \(I(G) \equiv I(P) \) (perfect map)

In other words, all independence represented in G are true, and there are no other independence relations.

Do all distributions have perfect maps?

Perfection may not be attainable

The “misconception” example in K&F (pp. 82-3), where Alice, Bob, Charles, and Debbie study in pairs shown, but A and B never work together, nor do C and D.

Note no arrows, but a link still means some probabilistic relation.

Perfection may not be attainable

Suppose that we have
\[
(A \perp B|C, D)
\]
and
\[
(C \perp D|A, B)
\]

Now, draw the Bayes net (have fun!).

Note no arrows, but a link still means some probabilistic relation.

Interesting questions

- Does every probability distribution have a corresponding Bayesian network?

 Chain rule says yes

- Given the independence structure of a probability distribution, and a graph that captures them all \(I(G) = I(P) \), is the corresponding graph unique (ignoring isomorphisms)?

 Case study of three nodes says no

- Do our graphs always faithfully capture the independence structure of our distributions?

 Misconception example says no
Undirected graphical models

- Also referred to as
 - Markov Networks
 - Markov Random Fields

- Nodes represent (groups of) random variables

- Edges represent probabilistic relations between connected nodes.

- We have already seen an example suggestive that arrows are not always helpful.

Markov Blanket

- The Markov blanket of a node, X, is a particular set of (nearby) nodes B where $X \perp X_i | B$ for all X_i
- For directed graphs the Markov blanket is the parents, children, and co-parents of X.
- For undirected graphs this is simply the set of nodes connected to X.

Undirected graphical models

- The analog to d-separation is simper
 - Disjoint sets A and B are independent conditioned on C if all paths from nodes in A to nodes in B pass through C.

Here $(A \perp B | C)$ for all probability distributions represented by this graph.

Undirected graphical models

- Bayes nets where nodes only have one parent are easily converted to undirected graphs without changing links.

- (Discussed in more detail soon)
Intuitively, for any two nodes, x_i and x_j, not connected by a link, $x_i \perp x_j|\{x_i,j\}$.

So, $p(\ldots, x_i \ldots, x_j \ldots) = p(x_i|x/\{i,j\})p(x_j|x/\{i,j\})p(x/\{i,j\})$

This suggests that an appropriate factorization should not have factors with these (non directly linked) nodes together.

A group of nodes that are all (fully) connected cannot be factored by the above rule.

So, we add nodes into factors, provided that they are all connected.

This leads to describing the semantics in terms of maximal cliques.

- A clique is a fully connected subset of nodes from the graph.
- A maximal clique is a clique where no node in the graph can be added to it without it ceasing to be a clique.

All pairwise linked nodes are cliques. For example, $\{x_1, x_2\}$ is a clique (green). However, it is not a maximal clique. $\{x_2, x_3, x_4\}$ is a maximal clique (blue). If we add another node (only x_3 is left) we no longer have a clique.