Announcements

* Today we will continue our discussion on Markov random
fields.

*  Much of this is from Bishop 8.3 (Misconception example is
from K&F)
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Undirected graphical models

* The analog to d-separation is simper
— Disjoint sets A and B are independent conditioned on C if all paths
from nodes in A to nodes in B pass through C.
— This defines the network semantics

Here (A 4 B|C) for
all probability distributions
represented by this graph.

Undirected graphical models

* We are headed to a factorization of the probability
distribution in terms of functions over maximal cliques
— Aclique is fully connected subset of nodes from the graph

— A maximal clique is a clique where no node in the graph can be
added to it without it ceasing to be a clique.

All parwise linked nodes are cliques. For example
{x,.x,} is a clique (green). However, it is not a
maximal clique. {x,,x,,x,} is a maximal clique
(blue). If we add another node (only x, is left) we

no longer have a clique.

Semantics of undirected graphical models

* For two nodes, x; and x;, not connected by a link,
x, L x‘i‘x/{i,j}.

e So,

p(...,x,,...,xj,...)= p(xi|x/{i,j})p(xj|X/{i,j})p(x/{i,j})

* This suggests that an appropriate factorization should not
have factors with these (non directly linked) nodes together
(so that it is consistent with the conditional independence)

* A group of nodes that are all (fully) connected cannot be
factored by the above rule (and hence there is no
simplification to be gained).




Factorization for undirected graphical models

Let C index maximal cliques. Then

1
p(x)= EHWC (xc)
where Z = ZHI//C (xc) (or jH!//C (xc )) is the partition function,

and y. (xc) are the clique potentials.

If x, and x; do not share an edge, then they do not share cliques.

sop()=7 ITve(xe)Tve(se) TT velx)

cec(i)oel(f)

Misconception example

Quick warm up
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D Intuitively we have (A L B\C,D) because the conditioning
specifies C,D, and the factors with A have no B, and vice versa.
Similarly, (C L D|A,B).
However, let us derive a result to confirm this

p(XY.Z)=9(X.2)p(Y.Z) & XL1Y|Z (algebra for =, other direction is easier)
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From directed to undirected

* FEasy case (all nodes have at most one parent).

I ) ITN-1 TN
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From directed to undirected

1 T2 TN-1 TN

¢ Convert: O—O—> —-O—-O

p(x) = p('xl )p(xz |x1 )p(x3 |x2) p(fol |xN—2)p(xN |xN—1)

T T2 TN-1 TN

. To: Q_O_ _Q_O

p(x)= ‘I’(x1 , X, )‘P(x2 ,x3) ‘P(xN_2 Xy )‘P(xN_, ,xN)

* Inspection suggests: ¥(x.x,)=p(x)p(x,|x)
‘P(x2,x3): p()@‘xz)

ll"(foz >Xno ) = p(fol ‘foz)
‘I’(fol ,xN)= p(xN "XN—])

From directed to undirected

e Harder case (some nodes have multiple parents).

xy

e Example:

* Because this implies conditioning on three variables, the
potentials for the clique are a function of four variables.

* These nodes need to be part of a clique (but they are not).

From directed to undirected
* Solution is to marry the parents.
* This makes the graph “moral”.

* Note that moralization looses conditional independence
information.
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From directed to undirected

¢ Complete algorithm
- Make the graph moral.
- Initialize each maximal clique potential to one.

- Multiply each factor in p() into an appropriate clique
potential.

- Note that Z=1

Example of converting directed to undirected

P(1,D.G,L,S)=P(I)P(D)P(G
P=y(D,G.I)y(S.I)y(L.G)
w(D.G.1)=P(1)P(D)P(G|1.D) y(S.1)=P(S|1) y(L.G)=P(LIG)
(Is this unique?)

1.D)P(L|G)P(S|I)

Example of converting directed to undirected

P(1,D,G,L,S)=P(I)P(D)P(G
P=y(D.G.I)y(S.I)y(L.G)

w(D.G.1)=P(1)P(D)P(G|1.D) y(S.1)=P(s|1) y(L.G)=P(LIG)
w(D.G.1)=P(D)P(G|1.D) w(s.1)=P(1)P(S|I) w(L.G)=P(L|G)

1.D)P(L|G)P(S]I)

Energy function encoding

We will assume that all y. (xc) >0.

In general, we leave the semantics of v/ (xc) open, but for undirected
graphs that come from directed graphs where each node has one parent,

the semantics follows that for the directed graphs (as we have just done).

Since . (XC) >0 we will often write y . (xc) = exp{—E(xc)} where E()

is the energy function.




Energy function encoding (2)

Writing v/ (XC) = exp{—E(xc)} means that

= 1Iv.(x0)
= TTew{-£(x)
= %exp {E—E(Xc )}

1
=Eexp{—E(x)} Where E ZE xc

Example of a Markov random field

Consider a binary image (pixels are either black or white).
* Pixels are represented by {-1,1}.

Neighboring pixels tend to have the same color

Suppose the image have is an underlying accurate image
where some of the bits have been flipped by a noise process.

Example of a Markov random field (2)

e Undirected graphical model.

Yi

Example of a Markov random field (2)

* For low energy (high probability)

x, =y, most of the time (set by noise level)

X, = x; most of the time if i and j are neighbours.

X; could be biased to have one value or the other.
A simple energy function for the entire grid is:
E(";Y) = hzxi - ﬁzxixf - nzx,-y,-

Because values are 1 and -1, being JX\/

the same makes the sums bigger, :Cz )‘/
being different makes them smaller.




Example of a Markov random field (3)

x, =Yy, most of the time (set by noise level)
x, =x; most of the time if i and j are neighbours.
X

could be biased to have one value or the other.

For each {x,,y, } maximum clique, E(x,,y,) =—nex,2y, (171>0)
(high probablity corresponds to low energy)
127" jeneighbor(i

For unique{x. X (.)} max clique, E(xi ,xj) =—Pex;ox; (B>0)

For a subset of the above cliques, one for each i, add in a term hex;.

Example of a Markov random field (4)

Notice in the previous analysis we assigned arguably symmetric
cliques different potentials

- Left boundary x; might get different potentials than right
boundary x;.

- Some x;; get a factor for the bias, other do not.
Notice that exact assignment to clique potentials may not matter

We can jump quickly to the overall picture, hence:

E(x,y)=h2xi —ﬁinxj —nzxiyy u
ij i

Example of a Markov random field (5)

* Finding a low energy (high probability) state using ICM
(iterated conditional modes).

- Initialize x; to yi.
- For each i, change x; if energy decreases.
- Repeat until energy no longer can be decreased.

* Converges to a local minimum because we only decrease.
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Directed and undirected perfect maps

D is subset of distributions in P that are perfectly represented
by directed graphs; similarly U for undirected graphs.




