
Announcements

• Today we will continue our discussion on Markov random 
fields.

• Much of this is from Bishop 8.3 (Misconception example is 
from K&F)

Undirected graphical models

• The analog to d-separation is simper
– Disjoint sets A and B are independent conditioned on C if all paths 

from nodes in A to nodes in B pass through C.
– This defines the network semantics 
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Here  A ! B C( )   for
all probability distributions
represented by this graph. 

Undirected graphical models

• We are headed to a factorization of the probability 
distribution in terms of functions over maximal cliques
– A clique is fully connected subset of nodes from the graph
– A maximal clique is a clique where no node in the graph can be 

added to it without it ceasing to be a clique. 
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All parwise linked nodes are cliques. For example
x1, x2{ }  is a clique (green). However, it is not a

maximal clique. x2 , x3, x4{ }  is a maximal clique 
(blue). If we add another node (only x1  is left) we 
no longer have a clique. 

• For two nodes, xi and xj, not connected by a link, 

• So,

• This suggests that an appropriate factorization should not 
have factors with these (non directly linked) nodes together 
(so that it is consistent with the conditional independence)

• A group of nodes that are all (fully) connected cannot be 
factored by the above rule (and hence there is no 
simplification to be gained).

Semantics of undirected graphical models

xi ! x j x i, j{ }.

 
p …, xi ,…, x j ,…( ) = p xi x i, j{ }( ) p xj x i, j{ }( ) p x i, j{ }( )



Factorization for undirected graphical models

Let C index maximal cliques. Then
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and ! C xC( )  are the clique potentials.

If xi  and x jj  do not share an edge, then they do not share cliques.
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Misconception example

p A,B,C,D( )!" A,C( )" C,B( )" B,D( )" D,A( )
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D Intuitively we have A ! B C,D( )  because the conditioning
specifies C,D, and the factors with A have no B, and vice versa.

Similarly, C ! D A,B( ).

However, let us derive a result to confirm this 
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= x1 + x2 + x3( ) a1 + a2 + a3( )           (gives all combinations xi  of  and aj )
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!   is a constant pulled out a sum over x  )

= x1 + x2 + x3( ) a1 + a2 + a3( )
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(algebra for !,  other direction is easier)



From directed to undirected

• Easy case (all nodes have at most one parent).

• Example:

• Becomes: 

x1 x2 xN−1 xN

x1 x2 xN−1 xN

From directed to undirected

• Convert:

• To:

• Inspection suggests: 

x1 x2 xN−1 xN

x1 x2 xN−1 xN

p x( ) = p x1( ) p x2 x1( ) p x3 x2( )!!! ! !!! p xN"1 xN"2( ) p xN xN"1( )

p x( ) = ! x1, x2( )! x2 , x3( )!!!...!!!! xN"2 , xN"1( )! xN"1, xN( )

 

! x1, x2( ) = p x1( ) p x2 x1( )
! x2 , x3( ) = p x3 x2( )
!!!!!!!!!!!!!!!i!i!i!

! xN"2 , xN"1( ) = p xN"1 xN"2( )
! xN"1, xN( ) = p xN xN"1( )
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From directed to undirected

• Harder case (some nodes have multiple parents).

• Example:

• Because this implies conditioning on three variables, the 
potentials for the clique are a function of four variables.

• These nodes need to be part of a clique (but they are not).

From directed to undirected

• Solution is to marry the parents.

• This makes the graph “moral”.

• Note that moralization looses conditional independence 
information. 

 
x1 x3
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From directed to undirected

• Complete algorithm
- Make the graph moral.
- Initialize each maximal clique potential to one. 
- Multiply each factor in p() into an appropriate clique 

potential.
- Note that Z=1

 

Example of converting directed to undirected

Difficulty Intelligence

SATGrade

Letter

P I ,D,G,L,S( ) = P I( )P D( )P G I ,D( )P L G( )P S I( )
P =! D,G, I( )! S, I( )! L,G( )
! D,G, I( ) = P I( )P D( )P G I ,D( ) ! S, I( ) = P S I( ) ! L,G( ) = P L G( )
(Is this unique?) 

Difficulty Intelligence

SATGrade

Letter

Example of converting directed to undirected

Difficulty Intelligence

SATGrade

Letter

P I ,D,G,L,S( ) = P I( )P D( )P G I ,D( )P L G( )P S I( )
P =! D,G, I( )! S, I( )! L,G( )
! D,G, I( ) = P I( )P D( )P G I ,D( ) ! S, I( ) = P S I( ) ! L,G( ) = P L G( )
! D,G, I( ) = P D( )P G I ,D( ) ! S, I( ) = P I( )P S I( ) ! L,G( ) = P L G( )

Difficulty Intelligence

SATGrade

Letter

Energy function encoding

We will assume that all ! C xC( ) > 0.

In general, we leave the semantics of ! C xC( )  open, but for undirected  
graphs that come from directed graphs where each node has one parent, 
the semantics follows that for the directed graphs (as we have just done). 

Since ! C xC( ) > 0 we will often write ! C xC( ) = exp "E xC( ){ }  where E()

is the energy function.



Energy function encoding (2)

Writing ! C xC( ) = exp "E xC( ){ }  means that
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Example of a Markov random field

• Consider a binary image (pixels are either black or white).
• Pixels are represented by {-1,1}.

• Neighboring pixels tend to have the same color

• Suppose the image have is an underlying accurate image 
where some of the bits have been flipped by a noise process.

Example of a Markov random field (2)

• Undirected graphical model.

xi

yi

Example of a Markov random field (2)

• For low energy (high probability) 

xi

yi

xi = yi    most of the time (set by noise level)
xi = x j   most of the time if i and j are neighbours.
xi          could be biased to have one value or the other.

A simple energy function for the entire grid is:

E x,y( ) = h xi! "# xi
i, j
! x j "$ xi

i
! yi

Because values are 1 and -1, being 
the same makes the sums bigger, 
being different makes them smaller.



Example of a Markov random field (3)

 

xi = yi    most of the time (set by noise level)
xi = x j   most of the time if i and j are neighbours.
xi          could be biased to have one value or the other.

For each xi , yi{ }maximum clique, E xi , yi( ) = !"ixi iyi    (" > 0)
(high probablity corresponds to low energy)

For unique xi , x j#neighbor i( ){ }max clique, E xi , x j( ) = !$ixi ix j    ($ > 0)

For a subset of the above cliques, one for each i, add in a term hixi .

Example of a Markov random field (4)

• Notice in the previous analysis we assigned arguably symmetric 
cliques different potentials 
- Left boundary xi might get different potentials than right 

boundary xi.
- Some xij get a factor for the bias, other do not.

• Notice that exact assignment to clique potentials may not matter 
• We can jump quickly to the overall picture, hence:

xi

yiE x,y( ) = h xi! "# xi
i, j
! x j "$ xi

i
! yy

Example of a Markov random field (5)

• Finding a low energy (high probability) state using ICM 
(iterated conditional modes).
- Initialize xi to yi.
- For each i, change xi if energy decreases.
- Repeat until energy no longer can be decreased.

• Converges to a local minimum because we only decrease.
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Directed and undirected perfect maps

D is subset of distributions in P that are perfectly represented 
by directed graphs; similarly U for undirected graphs.


