Announcements

- Today we will continue our discussion on Markov random fields.
- Much of this is from Bishop 8.3 (Misconception example is from K\&F)

Undirected graphical models

- We are headed to a factorization of the probability distribution in terms of functions over maximal cliques
- A clique is fully connected subset of nodes from the graph
- A maximal clique is a clique where no node in the graph can be added to it without it ceasing to be a clique.

All parwise linked nodes are cliques. For example $\left\{x_{1}, x_{2}\right\}$ is a clique (green). However, it is not a maximal clique. $\left\{x_{2}, x_{3}, x_{4}\right\}$ is a maximal clique (blue). If we add another node (only x_{1} is left) we no longer have a clique.

Undirected graphical models

- The analog to d-separation is simper
- Disjoint sets A and B are independent conditioned on C if all paths from nodes in A to nodes in B pass through C.
- This defines the network semantics

Here $(A \perp B \mid C)$ for all probability distributions represented by this graph.

Semantics of undirected graphical models

- For two nodes, x_{i} and x_{j}, not connected by a link,

$$
x_{i} \perp x_{j} \mid \mathbf{x} /\{i, j\}
$$

- So,

$$
p\left(\ldots, x_{i}, \ldots, x_{j}, \ldots\right)=p\left(x_{i} \mid \mathbf{x} /\{i, j\}\right) p\left(x_{j} \mid \mathbf{x} /\{i, j\}\right) p(\mathbf{x} /\{i, j\})
$$

- This suggests that an appropriate factorization should not have factors with these (non directly linked) nodes together (so that it is consistent with the conditional independence)
- A group of nodes that are all (fully) connected cannot be factored by the above rule (and hence there is no simplification to be gained).

Factorization for undirected graphical models

Let C index maximal cliques. Then
$p(\mathrm{x})=\frac{1}{Z} \prod_{c} \psi_{C}\left(\mathrm{x}_{C}\right)$
where $\mathrm{Z}=\sum_{x} \prod_{c} \psi_{C}\left(\mathrm{x}_{C}\right)$ (or $\int_{x} \prod_{c} \psi_{C}\left(\mathrm{x}_{C}\right)$) is the partition function,
and $\psi_{C}\left(\mathrm{x}_{C}\right)$ are the clique potentials.

If x_{i} and x_{j} do not share an edge, then they do not share cliques.
So $p(\mathrm{x})=\frac{1}{Z} \prod_{c(i)} \psi_{C}\left(\mathrm{x}_{C}\right) \prod_{c(j)} \psi_{C}\left(\mathrm{x}_{C}\right) \prod_{c \notin c(i) \cup c(j)} \psi_{C}\left(\mathrm{x}_{C}\right)$

Misconception example

$p(A, B, C, D) \propto \psi(A, C) \psi(C, B) \psi(B, D) \psi(D, A)$

Intuitively we have $(A \perp B \mid C, D)$ because the conditioning specifies C, D, and the factors with A have no B, and vice versa. Similarly, $(C \perp D \mid A, B)$.

However, let us derive a result to confirm this

$$
\begin{aligned}
p(X, Y, Z) & =\varphi(X, Z) \varphi(Y, Z) \Leftrightarrow X \perp Y \mid Z \quad \text { (algebra for } \Rightarrow \text {, other direction is easier) } \\
p(Y \mid Z) p(X \mid Z) & =\frac{\sum_{X} \varphi(X, Z) \varphi(Y, Z) \sum_{X} \varphi(X, Z) \varphi(Y, Z)}{\sum_{X, Y} \varphi(X, Z) \varphi(Y, Z)} \sum_{X, Y} \varphi(X, Z) \varphi(Y, Z) \\
& =\frac{\varphi(Y, Z) \sum_{X} \varphi(X, Z)}{\sum_{X} \varphi(X, Z) \sum_{Y} \varphi(Y, Z)} \frac{\varphi(X, Z) \sum_{Y} \varphi(Y, Z)}{\sum_{X} \varphi(X, Z) \sum_{Y} \varphi(Y, Z)} \\
& =\frac{\varphi(Y, Z) \sum_{X} \varphi(X, Z)}{\left(\sum_{X} \varphi(X, Z) \sum_{Y} \varphi(Y, Z)\right.} \overline{\left(\sum_{Y} \varphi(Y, Z)\right)} \overline{\left(\sum_{X} \varphi(X, Z)\right)\left(\sum_{Y} \varphi(Y, Z)\right)} \\
& =\frac{\varphi(Y, Z)}{\left(\sum_{Y} \varphi(Y, Z)\right) \frac{\varphi(X, Z)}{\left(\sum_{X} \varphi(X, Z)\right)} \quad \text { (canceling green and red pairs) }} \\
& =\frac{\varphi(Y, Z) \varphi(X, Z)}{\sum_{X, Y} \varphi(Y, Z) \varphi(X, Z)} \\
& =\frac{p(X, Y, Z)}{p(Z)}
\end{aligned}
$$

From directed to undirected

- Easy case (all nodes have at most one parent).
- Example:

- Becomes:

From directed to undirected

- Harder case (some nodes have multiple parents).
- Example:

- Because this implies conditioning on three variables, the potentials for the clique are a function of four variables.
- These nodes need to be part of a clique (but they are not).

From directed to undirected

- Convert:

$$
p(\mathrm{x})=p\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right) p\left(x_{3} \mid x_{2}\right) \cdots p\left(x_{N-1} \mid x_{N-2}\right) p\left(x_{N} \mid x_{N-1}\right)
$$

- To:

$$
p(\mathrm{x})=\Psi\left(x_{1}, x_{2}\right) \Psi\left(x_{2}, x_{3}\right) \quad \ldots \quad \Psi\left(x_{N-2}, x_{N-1}\right) \Psi\left(x_{N-1}, x_{N}\right)
$$

- Inspection suggests: $\Psi\left(x_{1}, x_{2}\right)=p\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right)$

$$
\begin{aligned}
& \Psi\left(x_{2}, x_{3}\right)=p\left(x_{3} \mid x_{2}\right) \\
& \cdots\left(x_{N-2}, x_{N-1}\right)=p\left(x_{N-1} \mid x_{N-2}\right)
\end{aligned}
$$

$$
\Psi\left(x_{N-1}, x_{N}\right)=p\left(x_{N} \mid x_{N-1}\right)
$$

From directed to undirected

- Solution is to marry the parents.
- This makes the graph "moral".
- Note that moralization looses conditional independence information.

From directed to undirected

- Complete algorithm
- Make the graph moral.
- Initialize each maximal clique potential to one.
- Multiply each factor in p() into an appropriate clique potential.
- Note that $\mathrm{Z}=1$

Example of converting directed to undirected

Example of converting directed to undirected

Energy function encoding

We will assume that all $\psi_{C}\left(\mathrm{x}_{C}\right)>0$.

In general, we leave the semantics of $\psi_{C}\left(\mathrm{x}_{C}\right)$ open, but for undirected graphs that come from directed graphs where each node has one parent, the semantics follows that for the directed graphs (as we have just done).

Since $\psi_{c}\left(\mathrm{x}_{c}\right)>0$ we will often write $\psi_{C}\left(\mathrm{x}_{c}\right)=\exp \left\{-E\left(\mathrm{x}_{c}\right)\right\}$ where E() is the energy function.

Energy function encoding (2)

Writing $\psi_{C}\left(\mathrm{x}_{C}\right)=\exp \left\{-E\left(\mathrm{x}_{C}\right)\right\}$ means that

$$
\begin{aligned}
p(x) & =\frac{1}{Z} \prod_{c} \psi_{x}\left(\mathrm{x}_{C}\right) \\
& =\frac{1}{Z} \prod_{c} \exp \left\{-E\left(\mathrm{x}_{C}\right)\right\} \\
& =\frac{1}{Z} \exp \left\{\sum_{c}-E\left(\mathrm{x}_{C}\right)\right\} \\
& =\frac{1}{Z} \exp \{-E(x)\} \quad \text { Where } \quad E(x)=\sum_{c} E\left(\mathrm{x}_{C}\right)
\end{aligned}
$$

Example of a Markov random field (2)

- Undirected graphical model.

Example of a Markov random field

- Consider a binary image (pixels are either black or white).
- Pixels are represented by $\{-1,1\}$.
- Neighboring pixels tend to have the same color
- Suppose the image have is an underlying accurate image where some of the bits have been flipped by a noise process.

```
Bayes'
Theorem
```


Example of a Markov random field (2)

- For low energy (high probability)

Example of a Markov random field (3)

$x_{i}=y_{i}$ most of the time (set by noise level)
$x_{i}=x_{j}$ most of the time if i and j are neighbours.
$x_{i} \quad$ could be biased to have one value or the other.

For each $\left\{x_{i}, y_{i}\right\}$ maximum clique, $\mathrm{E}\left(x_{i}, y_{i}\right)=-\eta \bullet x_{i} \bullet y_{i} \quad(\eta>0)$
(high probablity corresponds to low energy)

For unique $\left\{x_{i}, x_{j \in n e i g h b o r(i)}\right\}$ max clique, $\mathrm{E}\left(x_{i}, x_{j}\right)=-\beta \cdot x_{i} \bullet x_{j} \quad(\beta>0)$

For a subset of the above cliques, one for each i, add in a term $h \bullet x_{i}$.

Example of a Markov random field (5)

- Finding a low energy (high probability) state using ICM (iterated conditional modes).
- Initialize x_{i} to y_{i}.
- For each i, change x_{i} if energy decreases.
- Repeat until energy no longer can be decreased.
- Converges to a local minimum because we only decrease.

with noise

result

Example of a Markov random field (4)

- Notice in the previous analysis we assigned arguably symmetric cliques different potentials
- Left boundary x_{i} might get different potentials than right boundary x_{i}.
- Some $x_{i j}$ get a factor for the bias, other do not.
- Notice that exact assignment to clique potentials may not matter
- We can jump quickly to the overall picture, hence:

$$
E(\mathbf{x}, \mathbf{y})=h \sum x_{i}-\beta \sum_{i, j} x_{i} x_{j}-\eta \sum_{i} x_{i} y_{y}
$$

Directed and undirected perfect maps

D is subset of distributions in P that are perfectly represented by directed graphs; similarly U for undirected graphs.

