
Fancy formulas from algebra

f x1,!x2 !,!...!,!xN()
x1 ,! x2 !,!...!,!xN
all values of each
! "## $##

! = ...
x2 !

!
x1

!
xN !
!

any order you like
! "# $#

f x1,!x2 !,!...!,!xN()

(essentially a definition)

ai!() bj!() = ai!! bj (exchanging products and sums)

Review

More warmup

! x2, x3()
No dependency on x1
hence we can move
factor outside sum
over x1.

!"# $#
! x1, x2()

x1

"
x2

" = ! x2, x3() ! x1, x2()
x1

"
Vector of size over the
components of x2

! "# $#x2

"

(Recall the distibutive law: ba + ca = a(b + c))

This rule enables us to move sums “inwards” (or equivalently
factors “outward”) to break big sums over big products into
smaller pieces.

This works as long as what is being shuffled do not have
variables in common (e.g., sum over x1 and potential over x2
and x3).

This is not the same as

! x2, x3()
x2

"
#
$
%

&%

'
(
%

)%
! x1, x2()

x1

"
#
$
%

&%

'
(
%

)%
because x2 is shared!

Review

p xn() =!! ! ! fL x1, x1, ..., xn()
xN
!

xN"1

! fR xn , xn+1, ..., xN()
xn+1
! !

xn"1
!

x2
!

x1
!

= ! ... fL x1, x1, ..., xn()!
xn"1
!

x2
!

x1
!

#

$%
&

'(
! ... ! fR xn , xn+1, ..., xN()

xN
!

xN"1

!
xn+1
!

#

$%
&

'(

= ! ...) i, i+1 xi , xi+1()
i=1

n"1

* !
xn"1
!

x2
!

x1
!

#

$%
&

'(
! ... !) i, i+1 xi , xi+1()

i=n

N"1

*
xN
!

xN"1

!
xn+1
!

#

$%
&

'(

= ! ...) n"i,n"i+1 xn"i , xn"i+1()
i=1

n"1

*
x1
!

xn"2
!

xn"1
!

#

$%
&

'(
! ... !) i, i+1 xi , xi+1()

i=n

N"1

*
xN
!

xN"1

!
xn+1
!

#

$%
&

'(

x1 xn−1 xn xn+1 xN

µα(xn−1) µα(xn) µβ(xn) µβ(xn+1)

Marginals
on a chain

p x() =! 1,2 x1, x2()! 2,3 x2, x3()!!!...!!!! N"2,N"1 xN"2, xN"1()! N"1,N xN"1, xN()

Review

p xn() = !
xn!2
"

xn!1
" ... ! # n!i, n!i+1 xn!i , xn!i+1()

i=1

n!1

$
x1
"

%

&'
(

)*
!
xn+1
" ... ! # i, i+1 xi , xi+1()

i=n

N!1

$
xN
"

xN!1

"
%

&'
(

)*

!
xn!2
"

xn!1
" ... ! # n!i, n!i+1 xn!i , xn!i+1()

i=1

n!1

$
x1
" = !

xn!2
"

xn!1
" ... # n!i, n!i+1 xn!i , xn!i+1()

i=1

n!2

$!# 1,2 x1, x2()
x1
"

%
&
'

('

)
*
'

+'x2
"

= !
xn!2
"

xn!1
" ... # n!i, n!i+1 xn!i!1, xn!i()

i=1

n!3

$ # 2,3 x2, x3() !# 1,2 x1, x2()
x1
"

%
&
'

('

)
*
'

+'x2
"

%
&
'

('

)
*
'

+'x3
"

...

= # n!1,n xn!1, xn()
xn!1
" ... # 3,4 x3, x4()

x3
" # 2,3 x2, x3() !# 1,2 x1, x2()

x1
"

%
&
'

('

)
*
'

+'x2
"

%
&
'

('

)
*
'

+'

%
&
'

('

)
*
'

+'

%
&
'

('

)
*
'

+'

Review

and

!
xn!2
"

xn!1
" ... ! # n!i,n!i+1 xn!i , xn!i+1()

i=1

n!1

$
x1
" = # n!1,n xn!1, xn()

xn!1
" ... # 3,4 x3, x4()

x3
" # 2,3 x2, x3() !# 1,2 x1, x2()

x1
"

%
&
'

('

)
*
'

+'x2
"

%
&
'

('

)
*
'

+'

%
&
'

('

)
*
'

+'
...

%
&
'

('

)
*
'

+'

(Deriving the right factor is similar to doing
the left one which we did in detail.)

xn+1
! ... ! " i, i+1 xi , xi+1()

i=n

N#1

$
xN
!

xN#1

! = " n,n+1 xn , xn+1()!
xn+1
! ... " N#2,N#1 xN#2, xN#1() !" N#1, N xN#1, xN()

xN
!

%
&
'

('

)
*
'

+'xN#1

!
%
&
'

('

)
*
'

+'
...

%
&
'

('

)
*
'

+'

p xn() = !
xn!2
"

xn!1
" ... ! # n!i, n!i+1 xn!i , xn!i+1()

i=1

n!1

$
x1
"

%

&'
(

)*
!
xn+1
" ... ! # i, i+1 xi , xi+1()

i=n

N!1

$
xN
"

xN!1

"
%

&'
(

)*

where

Review

Computational Complexity

!
xn!2

"
xn!1

" ... ! # n!i,n!i+1 xn!i , xn!i+1()
i=1

n!1

$
x1

" = # n!1,n xn!1, xn()
xn!1

" ... # 3,4 x3, x4()
x3

" # 2,3 x2, x3() !# 1,2 x1, x2()
x1

"
K sums of K values
! "## $##

%

&
''

(
'
'

)

*
''

+
'
'

K evaluations of K products
! "##### $#####

x2

"

K sums of K values
% &'''''''''''''''''''''

%

&

'
'
''

(

'
'
'
'

)

*

'
'
''

+

'
'
'
'

%

&

'
'
''

(

'
'
'
'

)

*

'
'
''

+

'
'
'
'

...

%

&

'
'
''

(

'
'
'
'

)

*

'
'
''

+

'
'
'
'

Suppose each variable has K values
What is the cost of evaluating the first factor?

The cost for computing the part shown in orange is O K 2().

Review

Message passing interpretation

x1 xn−1 xn xn+1 xN

µα(xn−1) µα(xn) µβ(xn) µβ(xn+1)

Define µ! xn() as a message passed from node xn"1 to node xn .

Define µb xn() as a message passed from node xn+1 to node xn .

Passing messages will correspond to the computation of
taking input messages, and computing output messages.

Review
Message passing interpretation

x1 xn−1 xn xn+1 xN

µα(xn−1) µα(xn) µβ(xn) µβ(xn+1)

xn+1
! ... ! " i, i+1 xi , xi+1()

i=n

N#1

$
xN
!

xN#1

! =

" n,n+1 xn , xn+1()!
xn+1
! ... " N#2,N#1 xN#2, xN#1() !" N#1, N xN#1, xN()

xN
!

µb xN#1()
! "### $###

%

&
''

(
'
'

)

*
''

+
'
'

xN#1

!

µb xN#2()
! "######## $########

%

&

'
'
'

(

'
'
'

)

*

'
'
'

+

'
'
'

...

µb xn()
! "############# $#############

%

&

'
'
'
''

(

'
'
'
'
'

)

*

'
'
'
''

+

'
'
'
'
'

Review

Message passing interpretation

x1 xn−1 xn xn+1 xN

µα(xn−1) µα(xn) µβ(xn) µβ(xn+1)

p xn() = 1
Z
µa xn()µb xn()

Algorithm Send a message from x1 to xn.
Send a message from xN to xn.
Element wise multiply messages.
Normalize by summing over values of xn (Z).

x1 xn−1 xn xn+1 xN

µα(xn−1) µα(xn) µβ(xn) µβ(xn+1)

To compute all marginals, send a message from left to right,
and right to left, storing the result. Now compute any
marginal as before.

If a node is observed, then we do the obvious. Specifically,
we clamp the values of variables to the particular case.

This means that messages flowing into an observed node do
not affect messages flowing out, as these are set to the
“clamped” value.

Review

Suppose p(x) factorizes as:

Make a node for each xi as usual.

Now, make a different kind of node for f() (e.g., squares).

Draw edges between the factor nodes and the variables in the
variable set, s.

Note that the factorization formula means that we can convert
both directed and undirected graphs to factor graphs.

p x() = f xs()
s
! where xs are sets of of variables within x.

Factor Graphs

x1 x2 x3

fa fb fc fd

Suppose p(x) factorizes as:

The graph is:

p x() = f xs()
s
! = fa x1, x2() fb x1, x2() fc x2, x3() fd x3()

Factor Graph Example

x1 x2 x3

fa fb fc fd

Suppose p(x) factorizes as:

p x() = f xs()

s
! = fa x1, x2() fb x1, x2() fc x2, x3() fd x3()

Factor Graph Example (continued)

This layout emphasizes that
factor graphs are bipartite.

Note two factors for the clique
for 1 and 2, suggesting that
factor graphs can preserve extra
structure compared to
undirected graphs.

x1 x2

x3

x1 x2

x3

fc

fa fb

Factor Graph Example (2)

p x() = p x1()
fa
! p x2()

fb
! p x3 x1, x2()

fc
" #$ %$

x1 x2

x3

f

x1 x2

x3

x1 x2

x3

fc

fa fb

Factor Graph Example (2)

second answer

Factor Graph Summary

p x() = f xs()
s
! where xs are sets of of variables within x.

Denote variables by circles

Denote each factor by a square

Draw links between squares and variables in the sets xs.

Factor graphs are bipartite

Factor graph for a distribution is not necessarily unique.

fs

x1

x2

x3

x1 xn−1 xn xn+1 xN

µα(xn−1) µα(xn) µβ(xn) µβ(xn+1)

Factor graphs conveniently represent the extended message
passing needed for inference on trees/polytrees.

Trees/Polytrees
A directed graph is tree if the root node has no parents, others
have exactly one parent.

An undirected graph is a tree if there is only one path
between any pair of nodes.

A directed graph is a polytree if there is only one path per
pair of nodes.

Factor Graphs and Trees

The factor graphs for directed trees, undirected trees,
and directed polytrees are all trees.

(Recall definition for undirected trees---there is only
one path between any two nodes).

This means that (variable) node, x, with K branches
divides a tree into K subtrees whose factors do not share
variables except x.

Sum-product algorithm

Generalizes what we did with chains.

Generalizes and simplifies an algorithm introduced as
“belief propagation”.

As with chains, consider the problem of computing the
marginal of a selected node, x.

x connects subgraphs
with node sets A, B, C.

x A
B

C

p x() = F x,XA()F x,XB()F x,XC()
where each of these three factors are themselves
groups of factors over x and the subgraphs.

More explicitly,

F x,XA() = f Xs()
s
! with Xs " x{ }! A

F x,XB() = f Xs()
s
! with Xs " x{ }! B

F x,XC() = f Xs()
s
! with Xs " x{ }!C

vector (all vars)

p x() = F x,XA()F x,XB()F x,XC()
where each of these three factors are themselves
groups of factors over x and the subgraphs.

More explicitly,

F x,XA() = f Xs()
s
! with Xs " x{ }! A

F x,XB() = f Xs()
s
! with Xs " x{ }! B

F x,XC() = f Xs()
s
! with Xs " x{ }!C

x A
B

C

p x() = p x()
X \ x{ }
! = F x,XA()F x,XB()F x,XC()

X \ x{ }
! = F x,XA()

A
!"#$

%
&'

F x,XB()
B
!"#$

%
&'

F x,XC()
C
!"#$

%
&'

(recall our fancy formula)

ai!() bj!() = ai!! bj

p x() = F x,XA()F x,XB()F x,XC()
where each of these three factors are themselves
groups of factors over x and the subgraphs.

More explicitly,

F x,XA() = f Xs()
s
! with Xs " x{ }! A

F x,XB() = f Xs()
s
! with Xs " x{ }! B

F x,XC() = f Xs()
s
! with Xs " x{ }!C

x A
B

C

p x() = p x()
X \ x{ }
! = F x,XA()F x,XB()F x,XC()

X \ x{ }
! = F x,XA()

A
!"#$

%
&'

F x,XB()
B
!"#$

%
&'

F x,XC()
C
!"#$

%
&'

Consider the first one

x

A

F x,XA()
A
! = f x, xA1, xA2()

A
! FA1 xA1,A1()FA2 xA2,A2()

= f x, xA1, xA2() FA1 xA1,A1()
A1
! FA2 xA2,A2()

A2
!

xA1,xA2
!

x xA1

xA2

A1 A2

Considering the first factor in the product on the previous slide,

F x,XA()
A
! = f x, xA1, xA2()

A
! FA1 xA1,A1()FA2 xA2,A2()

= f x, xA1, xA2() FA1 xA1,A1()
A1
! FA2 xA2,A2()

A2
!

xA1,xA2
!

x

A

x xA1

xA2

A1

To continue the expansion,
consider the first one

A2

F x,XA()
A
! = f x, xA1, xA2()

A
! FA1 xA1,A1()FA2 xA2,A2()

= f x, xA1, xA2() FA1 xA1,A1()
A1
! FA2 xA2,A2()

A2
!

xA1,xA2
!

x

A

x xA1

xA2

A1

This expands to
FA1 xA1,A1() = FA1,i xA1,A1i()

ne xA1()\ fx ,A
!

A2

A11

Notice that the sets A and
A1i have the same structure.

Sum-product algorithm

We could continue on recursively until we get to the leaf
nodes, thereby computing p(x) via recursion.

However, a message passing implementation is simpler, and is
better suited to computing all marginals at once.

Observations about factor graphs for trees

Any node can be root

Any node with K links splits the graph into K subgraphs
which do not share nodes.

If we pass messages from:
1) the leaves to a chosen root;
2) the chosen root to the leaves,

then all messages that can be passed have been passed.

Further, the number of messages in 1 and 2 are the same.

x1 x2 x3

x4

x1 x2 x3

x4

Observations about factor graphs

(x3 is the root)

Sum-product algorithm

We defined two kinds of messages:
1) From factors to nodes.
2) From nodes to factors.

In analogy with chains, factor-to-node messages provide marginal
distributions for a subgraph with the node. (In the chain case, we had
the left side and the right side).

In the chain case we did not have factor nodes. This worked because
the second kind of message (nodes-to-factor) is just “pass through” or
“copy” in the case of only two links. So, we described it as simply
passing messages from node to node.

xfs

µfs→x(x)

F
s
(x

,X
s
)

Marginal distribution for a node x

p x() = F x,Xs()
s!n x()
"

x/x
#

(marginal distribution for a node, x)
xfs

µfs→x(x)

F
s
(x

,X
s
) p x() = F x,Xs()

s!n x()
"

x/x
(marginalize)

= F x,Xs()
Xs
#

$
%
&

'&

(
)
&

*&s!n x()
" (interchange sums and products)

(recall our fancy formula)

ai!() bj!() = ai!! bj

Note that each sum is simpler than what we started
with because the variable sets are disjoint except for x.

Marginal distribution for a node x

p x() = F x,Xs()
s!n x()
"

x /x
#

= F x,Xs()
Xs
#

$
%
&

'&

(
)
&

*&s!n x()
"

= µ fx+x x()
s!n x()
"

µ fx+x x() , F x,Xs()
Xs
#

xfs

µfs→x(x)

F
s
(x

,X
s
)

Factor ! node messages

(factor-to-node message)

µ fs!x x() " Fs x,Xs()
Xs
(sum removes all variables except x.)

Where Fs x,Xs() = fs x, x1, x2, …, xM()G1 x1,Xs1()G2 x2,Xs2()…GM xM ,XsM()
Collections of factors in the M sub-graphs

! "####### $#######

Computing the factor ! node messages

xm

xM

x
fs

µxM→fs(xM)

µfs→x(x)

Gm(xm, Xsm)1 11

1

µ fs!x x() " Fs x,Xs()
Xs
(sum removes all variables except x.)

Where Fs x,Xs() = fs x, x1, x2, …, xM()G1 x1,Xs1()G2 x2,Xs2()…GM xM ,XsM()

Fs x,Xs()
Xs
= !

x2

#
x1

fs x, x1, x2, …, xM()
xM
#

Xx 2

!
XxM
G1 x1,Xs1()G2 x2,Xs2() GM xM ,XsM()

Xx1

#

So, Fs x,Xs()
Xs
= !

x2

#
x1

fs x, x1, x2, …, xM()
xM
Gm xm ,Xsm()

Xxm
#

m$ne fs()\x
%

(interchanging sums and products)

Computing the factor ! node messages

xm

xM

x
fs

µxM→fs(xM)

µfs→x(x)

Gm(xm, Xsm)1 11

1

Fs x,Xs()
Xs
! = !

x2

!
x1

! fs x, x1, x2, …, xM()
xM
! Gm xm ,Xsm()

Xxm
!

m"ne fs()\x
#

= !
x2

!
x1

! fs x, x1, x2, …, xM()
xM
! µxm$ fs

xm()
m"ne fs()\x
#

where we define:

µxm$ fs
xm() % Gm xm ,Xsm()

Xxm
! (node$ factor messages)

Computing the factor ! node messages

xm

xM

x
fs

µxM→fs(xM)

µfs→x(x)

Gm(xm, Xsm)1 11

1

