Review

Fancy formulas from algebra

$$
\sum_{\substack{x_{1}, x_{2}, \ldots x_{N} \\ \text { alv valueso feceach }}} f\left(x_{1}, x_{2}, \ldots, x_{N}\right)=\underbrace{\sum_{x_{1}} \sum_{x_{2}} \ldots \sum_{x_{N}}}_{\text {any order you like }} f\left(x_{1}, x_{2}, \ldots, x_{N}\right)
$$

(essentially a definition)

$$
\left(\sum a_{i}\right)\left(\sum b_{j}\right)=\sum \sum a_{i} b_{j} \quad \text { (exchanging products and sums) }
$$

Review

More warmup

This is not the same as
$\left\{\sum_{x_{2}} \psi\left(x_{2}, x_{3}\right)\right\}\left\{\sum_{x_{1}} \psi\left(x_{1}, x_{2}\right)\right\}$
because x_{2} is shared!
(Recall the distibutive law: $b a+c a=a(b+c)$)

This rule enables us to move sums "inwards" (or equivalently factors "outward") to break big sums over big products into smaller pieces.

This works as long as what is being shuffled do not have variables in common (e.g., sum over x_{1} and potential over x_{2} and x_{3}).

$$
\begin{aligned}
& \text { Review } \\
& p\left(x_{n}\right)=\left(\sum_{x_{n-1}} \sum_{x_{n-2}} \ldots \sum_{x_{i}} \prod_{i=1}^{n-1} \psi_{n-i, n-i+1}\left(x_{n-i}, x_{n-i+1}\right)\right)\left(\sum_{x_{n+1}} \ldots \sum_{x_{x-1}} \sum_{x_{v}} \prod_{i=n}^{N-1} \psi_{i, i+1}\left(x_{i}, x_{i+1}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left.=\left\{\sum_{x=1} \psi_{n-1010}\left(x_{n-1}, x_{n-1}\right) \ldots\left\{\sum_{x, 3} \psi_{3,4}\left(x_{3}, x_{4}\right)\left\{\sum_{x_{2}} \psi_{2,3}\left(x_{2}, x_{3}\right)\left\{\sum_{x 1} \psi_{12}\left(x_{1}, x_{2}\right)\right\}\right\}\right\}\right\}\right\}
\end{aligned}
$$

Review

$$
p\left(x_{n}\right)=\left(\sum_{x_{i=1}} \sum_{x_{i n-2}} \ldots \sum_{x_{i}} \prod_{i=1}^{n-1} \psi_{n-i, n-i+1}\left(x_{n-i}, x_{n-i+1}\right)\right)\left(\sum_{x_{n+1}} \ldots \sum_{x_{x-1}} \sum_{x_{x}} \prod_{i=n}^{N-1} \psi_{i, i+1}\left(x_{i}, x_{i+1}\right)\right)
$$

where

and

(Deriving the right factor is similar to doing
the left one which we did in detail.)

Review

Message passing interpretation

Define $\mu_{\alpha}\left(x_{n}\right)$ as a message passed from node x_{n-1} to node x_{n}. Define $\mu_{b}\left(x_{n}\right)$ as a message passed from node x_{n+1} to node x_{n}.

Passing messages will correspond to the computation of taking input messages, and computing output messages.

Review

Computational Complexity

Suppose each variable has K values
What is the cost of evaluating the first factor?

The cost for computing the part shown in orange is $\mathrm{O}\left(K^{2}\right)$.

Review

Message passing interpretation

$\sum_{x_{k+1}} \ldots \sum_{x_{x-1}} \sum_{x_{N}} \prod_{l=n}^{N-1} \psi_{i, t+1}\left(x_{i}, x_{i+1}\right)=$

Message passing interpretation

Algorithm Send a message from x_{1} to x_{n}.

Send a message from x_{N} to x_{n}.
Element wise multiply messages.
Normalize by summing over values of $x_{n}(\mathrm{Z})$.

Factor Graphs

Suppose $\mathrm{p}(\mathbf{x})$ factorizes as:

$$
p(\mathbf{x})=\prod f\left(x_{s}\right) \quad \text { where } x_{s} \text { are sets of of variables within } \mathbf{x} .
$$

Make a node for each x_{i} as usual.
Now, make a different kind of node for $f($) (e.g., squares).

Draw edges between the factor nodes and the variables in the variable set, s.

Note that the factorization formula means that we can convert both directed and undirected graphs to factor graphs.

Review

To compute all marginals, send a message from left to right, and right to left, storing the result. Now compute any marginal as before.

If a node is observed, then we do the obvious. Specifically, we clamp the values of variables to the particular case.

This means that messages flowing into an observed node do not affect messages flowing out, as these are set to the "clamped" value.

Factor Graph Example

Suppose $\mathrm{p}(\mathbf{x})$ factorizes as:

$$
p(\mathbf{x})=\prod_{s} f\left(x_{s}\right)=f_{a}\left(x_{1}, x_{2}\right) f_{b}\left(x_{1}, x_{2}\right) f_{c}\left(x_{2}, x_{3}\right) f_{d}\left(x_{3}\right)
$$

The graph is:

Factor Graph Example (continued)

Suppose $\mathrm{p}(\mathbf{x})$ factorizes as:

$$
p(\mathbf{x})=\prod_{s} f\left(x_{s}\right)=f_{a}\left(x_{1}, x_{2}\right) f_{b}\left(x_{1}, x_{2}\right) f_{c}\left(x_{2}, x_{3}\right) f_{d}\left(x_{3}\right)
$$

This layout emphasizes that factor graphs are bipartite.

Note two factors for the clique for 1 and 2 , suggesting that factor graphs can preserve extra structure compared to undirected graphs.

Factor Graph Example (2)

Factor Graph Example (2)

$$
p(\mathbf{x})=\underbrace{p\left(x_{1}\right)}_{f_{a}} \underbrace{p\left(x_{2}\right)}_{f_{b}} \underbrace{p\left(x_{3} \mid x_{1}, x_{2}\right)}_{f_{c}}
$$

Factor Graph Summary

$p(\mathbf{x})=\prod f\left(x_{s}\right) \quad$ where x_{s} are sets of of variables within \mathbf{x}.

Denote variables by circles

Denote each factor by a square

Draw links between squares and variables in the sets x_{s}

Factor graphs are bipartite

Factor graph for a distribution is not necessarily unique.

Factor graphs conveniently represent the extended message passing needed for inference on trees/polytrees.

Trees/Polytrees

A directed graph is tree if the root node has no parents, others have exactly one parent.

An undirected graph is a tree if there is only one path between any pair of nodes.

A directed graph is a polytree if there is only one path per pair of nodes.

Sum-product algorithm

Generalizes what we did with chains.
Generalizes and simplifies an algorithm introduced as "belief propagation".

As with chains, consider the problem of computing the marginal of a selected node, x.

$p(\mathbf{x})=F\left(x, X_{A}\right) F\left(x, X_{B}\right) F\left(x, X_{C}\right)$
where each of these three factors are themselves groups of factors over x and the subgraphs.

More explicitly,
$F\left(x, X_{A}\right)=\prod f\left(X_{s}\right) \quad$ with $X_{s} \subseteq\{x\} \cup A$
$F\left(x, X_{B}\right)=\prod f\left(X_{s}\right) \quad$ with $X_{s} \subseteq\{x\} \cup B$
$F\left(x, X_{C}\right)=\prod f\left(X_{s}\right) \quad$ with $X_{s} \subseteq\{x\} \cup C$
$p(x)=\sum_{X \backslash\{x\}} p(\mathbf{x})=\sum_{X \backslash x\}} F\left(x, X_{A}\right) F\left(x, X_{B}\right) F\left(x, X_{C}\right)=\left(\sum_{A} F\left(x, X_{A}\right)\right)\left(\sum_{B} F\left(x, X_{B}\right)\right)\left(\sum_{C} F\left(x, X_{C}\right)\right)$
(recall our fancy formula)
$\left(\sum a_{i}\right)\left(\sum b_{j}\right)=\sum \sum a b_{j}$

Considering the first factor in the product on the previous slide,

$$
\begin{aligned}
\sum_{A} F\left(x, X_{A}\right) & =\sum_{A} f\left(x, x_{A 1}, x_{A 2}\right) F_{A 1}\left(x_{A 1}, A 1\right) F_{A 2}\left(x_{A 2}, A 2\right) \\
& =\sum_{x_{11}, x_{22}} f\left(x, x_{A 1}, x_{A 2}\right) \sum_{A 1} F_{A 1}\left(x_{A 1}, A 1\right) \sum_{A 2} F_{A 2}\left(x_{A 2}, A 2\right)
\end{aligned}
$$

$$
\begin{aligned}
& \sum_{A} F\left(x, X_{A}\right)= \sum_{A} f\left(x, x_{A 1}, x_{A 2}\right) F_{A 1}\left(x_{A 1}, A 1\right) F_{A 2}\left(x_{A 2}, A 2\right) \\
&= \sum_{x_{A 1} x_{A 2}} f\left(x, x_{A 1}, x_{A 2}\right) \sum_{A 1} F_{A 1}\left(x_{A 1}, A 1\right) \sum_{A 2} F_{A 2}\left(x_{A 2}, A 2\right) \\
& \text { To continue the expansion, }
\end{aligned}
$$ consider the first one

$$
\begin{aligned}
\sum_{A} F\left(x, X_{A}\right) & =\sum_{A} f\left(x, x_{A 1}, x_{A 2}\right) F_{A 1}\left(x_{A 1}, A 1\right) F_{A 2}\left(x_{A 2}, A 2\right) \\
& =\sum_{x_{A 1}, x_{A 2}} f\left(x, x_{A 1}, x_{A 2}\right) \sum_{A 1} F_{A 1}\left(x_{A 1}, A 1\right) \sum_{A 2} F_{A 2}\left(x_{A 2}, A 2\right)
\end{aligned}
$$

This expands to

$$
F_{A 1}\left(x_{A 1}, A 1\right)=\prod_{n\left(x_{1}\right) \mid f_{x, 1}} F_{A 1, i}\left(x_{A 1}, A 1_{i}\right)
$$

Notice that the sets A and $A 1_{i}$ have the same structure

Sum-product algorithm

We could continue on recursively until we get to the leaf nodes, thereby computing $p(x)$ via recursion.

However, a message passing implementation is simpler, and is better suited to computing all marginals at once.

Observations about factor graphs for trees

Any node can be root
Any node with K links splits the graph into K subgraphs which do not share nodes.

If we pass messages from:

1) the leaves to a chosen root;
2) the chosen root to the leaves,
then all messages that can be passed have been passed.
Further, the number of messages in 1 and 2 are the same.

Observations about factor graphs

(x_{3} is the root)

Marginal distribution for a node x

$p(x)=\sum_{\mathbf{x} / x} \prod_{s \in n(x)} F\left(x, X_{s}\right)$
(marginal distribution for a node, x)

Sum-product algorithm

We defined two kinds of messages:

1) From factors to nodes.
2) From nodes to factors.

In analogy with chains, factor-to-node messages provide marginal distributions for a subgraph with the node. (In the chain case, we had the left side and the right side).

In the chain case we did not have factor nodes. This worked because the second kind of message (nodes-to-factor) is just "pass through" or "copy" in the case of only two links. So, we described it as simply passing messages from node to node.

Marginal distribution for a node x

$$
\begin{array}{rlr}
p(x) & =\sum_{\mathbf{x} / x: x \in n(x)} \prod_{s \in n} F\left(x, X_{s}\right) & \text { (marginalize) } \\
& =\prod_{s \in n(x)}\left\{\sum_{X_{s}} F\left(x, X_{s}\right)\right\} & \text { (interchange sums and products) } \\
& \left.\begin{array}{l}
\text { (recall our fancy formula) } \\
\\
\end{array} \sum a_{i}\right)\left(\sum b_{j}\right)=\sum \sum a_{i} b_{j}
\end{array}
$$

Note that each sum is simpler than what we started with because the variable sets are disjoint except for x.

Computing the factor \rightarrow node messages

$\mu_{f_{s} \rightarrow x}(x) \equiv \sum_{X_{s}} F_{s}\left(x, X_{s}\right) \quad$ (sum removes all variables except x.)
Where $F_{s}\left(x, X_{s}\right)=f_{s}\left(x, x_{1}, x_{2}, \ldots, x_{M}\right) G_{1}\left(x_{1}, X_{s 1}\right) G_{2}\left(x_{2}, X_{s 2}\right) \ldots G_{M}\left(x_{M}, X_{s M}\right)$
$\sum_{X_{s}} F_{s}\left(x, X_{s}\right)=\sum_{x_{1}} \sum_{x_{2}} \cdots \sum_{x_{M}} f_{s}\left(x, x_{1}, x_{2}, \ldots, x_{M}\right) \sum_{X_{x 1}} \sum_{X_{x 2}} \cdots \sum_{X_{s M}} G_{1}\left(x_{1}, X_{s 1}\right) G_{2}\left(x_{2}, X_{s 2}\right) \ldots . G_{M}\left(x_{M}, X_{s M}\right)$
So, $\sum_{X_{s}} F_{s}\left(x, X_{s}\right)=\sum_{x_{1}} \sum_{x_{2}} \cdots \sum_{x_{M}} f_{s}\left(x, x_{1}, x_{2}, \ldots, x_{M}\right) \prod_{m \in n\left(f_{s}\right) \backslash x} \sum_{X_{\mathrm{sm}}} G_{m}\left(x_{m}, X_{s m}\right)$
(interchanging sums and products)

Computing the factor \rightarrow node messages

$\mu_{f_{s} \rightarrow x}(x) \equiv \sum_{X_{s}} F_{s}\left(x, X_{s}\right) \quad$ (sum removes all variables except x.)
Where $F_{s}\left(x, X_{s}\right)=f_{s}\left(x, x_{1}, x_{2}, \ldots, x_{M}\right) \underbrace{G_{1}\left(x_{1}, X_{s 1}\right) G_{2}\left(x_{2}, X_{s 2}\right) \ldots G_{M}\left(x_{M}, X_{s M}\right)}_{\text {Collections of factors in the } \mathrm{M} \text { sub-graphs }}$

Computing the factor \rightarrow node messages

$$
\begin{aligned}
\sum_{X_{s}} F_{s}\left(x, X_{s}\right) & =\sum_{x_{1}} \sum_{x_{2}} \cdots \sum_{x_{M}} f_{s}\left(x, x_{1}, x_{2}, \ldots, x_{M}\right) \prod_{m \in n e\left(f_{s} \backslash x\right.} \sum_{X_{s m}} G_{m}\left(x_{m}, X_{s m}\right) \\
& =\sum_{x_{1}} \sum_{x_{2}} \cdots \sum_{x_{M}} f_{s}\left(x, x_{1}, x_{2}, \ldots, x_{M}\right) \prod_{m \in n\left(f_{s}\right) \backslash x} \mu_{x_{m} \rightarrow f_{s}}\left(x_{m}\right)
\end{aligned}
$$

where we define:
$\mu_{x_{m} \rightarrow f_{s}}\left(x_{m}\right) \equiv \sum_{X_{s n}} G_{m}\left(x_{m}, X_{s m}\right) \quad$ (node \rightarrow factor messages)

