
Suppose p(x) factorizes as: 

Make a node for each xi as usual.

Now, make a different kind of node for f() (e.g., squares). 

Draw edges between the factor nodes and the variables in the 
variable set, s. 

Note that the factorization formula means that we can convert 
both directed and undirected graphs to factor graphs. 

p x( ) = f xs( )
s
!         where xs are sets of of variables within x. 

Factor Graphs
Review
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Factor Graph Example (2)

 

p x( ) = p x1( )
fa
! p x2( )

fb
! p x3 x1, x2( )

fc
" #$ %$

Review

Factor Graph Summary

p x( ) = f xs( )
s
!         where xs are sets of of variables within x. 

Denote variables by circles

Denote each factor by a square

Draw links between squares and variables in the sets xs. 

Factor graphs are bipartite

Factor graph for a distribution is not necessarily unique.

Review
Trees/Polytrees

A directed graph is tree if the root node has no parents, others 
have exactly one parent. 

An undirected graph is a tree if there is only one path 
between any pair of nodes. 

A directed graph is a polytree if there is only one path per 
pair of nodes.

Review



Factor Graphs and Trees

Factor graphs for directed trees, undirected trees, and 
directed polytrees can all be trees. 

(Recall definition for undirected trees---there is only 
one path between any two nodes). 

This means that (variable) node, x,  with K branches 
divides a tree into K subtrees whose factors do not share 
variables except x. 

Review
Observations about factor graphs for trees

Any node can be root

Any node with K links splits the graph into K subgraphs 
which do not share nodes. 

If we pass messages from:
1) the leaves to a chosen root;
2) the chosen root to the leaves,

then all messages that can be passed have been passed.

Further, the number of messages in 1 and 2 are the same. 

Review

Sum-product algorithm

We defined two kinds of messages:
1) From factors to nodes.
2) From nodes to factors. xfs

µfs→x(x)

F
s
(x

,X
s
)

Review

p x( ) = F x,Xs( )
s!n x( )
"

x/x
#                 (marginalize)

= F x,Xs( )
Xs
#

$
%
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(
)
&

*&s!n x( )
"             (interchange sums and products)

(recall our fancy formula)

ai!( ) bj!( ) = ai!! bj

Note that each sum is simpler than what we started 
with because the variable sets are disjoint except for x.

Marginal distribution for a node x
Review



p x( ) = F x,Xs( )
s!n x( )
"

x/x
#

= F x,Xs( )
Xs
#
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*&s!n x( )
"

= µ fx+x x( )
s!n x( )
"

µ fx+x x( ) , F x,Xs( )
Xs
#

xfs

µfs→x(x)

F
s
(x

,X
s
)

Factor ! node messages

(factor-to-node message)

Review

 

µ fs!x x( ) " Fs x,Xs( )
Xs
#        (sum removes all variables except x.)

Where   Fs x,Xs( ) = fs x, x1, x2, …, xM( )G1 x1,Xs1( )G2 x2,Xs2( )…GM xM ,XsM( )

Fs x,Xs( )
Xs
# = !

x2

#
x1

# fs x, x1, x2, …, xM( )
xM
#

Xx 2

# !
XxM
# G1 x1,Xs1( )G2 x2,Xs2( ) .... GM xM ,XsM( )

Xx1

#

So, Fs x,Xs( )
Xs
# = !

x2

#
x1

# fs x, x1, x2, …, xM( )
xM
# Gm xm ,Xsm( )

Xxm
#

m$ne fs( )\x
%

(interchanging sums and products)

Computing the factor ! node messages

xm

xM

x
fs

µxM→fs(xM )

µfs→x(x)

Gm(xm, Xsm)1 11

1

 

Fs x,Xs( )
Xs
! = !

x2

!
x1

! fs x, x1, x2, …, xM( )
xM
! Gm xm ,Xsm( )

Xxm
!

m"ne fs( )\x
#

= !
x2

!
x1

! fs x, x1, x2, …, xM( )
xM
! µxm$ fs

xm( )
m"ne fs( )\x
#

where we define:

µxm$ fs
xm( ) % Gm xm ,Xsm( )

Xxm
!                 (node$ factor messages)

Computing the factor ! node messages

xm

xM

x
fs

µxM→fs(xM )

µfs→x(x)

Gm(xm, Xsm)1 11

1

The node ! factor message

(We have defined)

µxm! fs
xm( ) " Gm xm ,Xsm( )

Xsm

#
(For a node xm  we send its distribution
with the other variables in the subgraph
marginalized out.) 

xm

xM

x
fs

µxM→fs(xM )

µfs→x(x)

Gm(xm, Xsm)1 11

1



Computing the node ! factor message

µxm! fs
xm( ) = Gm xm ,Xsm( )

Xsm

"              (definition)

= Fl xm ,Xml( )
l#n xm( )\ fs
$

Xsm

"      (factors inside Gm )

= Fl xm ,Xml( )
Xml
"

l#n xm( )\ fs
$      (exchanging sums and products)

= µ fl!xm
xm( )

l#n xm( )\ fs
$          where  µ fl!xm

xm( ) = Fl xm ,Xml( )
Xml
"

This is just like where we 
started, but we exclude the 
node we are sending to. Doing 
the drill one more time ...

xm

fl

fL

fs

Fl(xm, Xml)

µxm! fs

1

1 1

Computing the node ! factor message

This is just like where we 
started, but we exclude the 
node we are sending to. Doing 
the drill one more time ...

xm

fl

fL

fs

Fl(xm, Xml)

µxm! fs

1

1 1

µxm! fs
xm( ) = µ fl!xm

xm( )
l"n xm( )\ fs
#

All nodes attached to the factor except the one the message is 
going to.  Nodes that only have two links just pass the 
message through (i.e., in the chain we skipped this part). 

Sum product on a slide

xm

xM

x
fs

µxM→fs(xM )

µfs→x(x)

Gm(xm, Xsm)11

1

1

xm

fl

fL

fs

Fl(xm, Xml)

µxm! fs

1

1 1

µxm! fs
xm( ) = µ fl!xm

xm( )
l"n xm( )\ fs
#

 
µ fs!x x( ) == !

x2
"

x1
" fs x, x1, x2,…, xM( )

xM
" µxm! fs

xm( )
m#ne fs( )\x
$

x f

µx→f (x) = 1

xf

µf→x(x) = f(x)

The sum-product algorithm (1)

First, pass messages from leaves to root. If you just want more than 
one marginal or plan to do other computation, store the results.

Initialization: If leaf node is a variable node, then start with a 
unity message. If leaf node is factor, then start with the factor. 



The sum-product algorithm (2)

First, pass messages from leaves to root. If you just want more than 
one marginal or plan to do other computation, store the results.

Initialization: If leaf node is a variable node, then start with a 
unity message. If leaf node is factor, then start with the factor.

Note that all needed messages for computation will arrive at each 
node eventually.

The root node can compute the needed marginal.

The sum-product algorithm (3)

To prepare for other computations (e.g, all marginals), pass
messages from the root back to the leaves.

Because we just passed all messages to the root, the root has all 
the messages from its neighbors, and thus all it needs to compute 
the outward messages 

Once we pass the messages back to the leaves, every node has all 
possible incoming messages on all its links, and can thus be 
considered the root. 

Hence we can compute all marginals for twice the cost of 
computing one of them (from before, all messages that can be 
passed, have now been passed). 

The sum-product algorithm (4)

Another easy computation is the marginal for the group of 
variables in a factor. 

Intuitively (and easily shown) this is given by:

p xs( ) = f xs( ) µxi! fs
i"n fs( )
# xi( )

fs

x1

x2

x3

The sum-product algorithm (5)

If the factor graph came from a directed graph, then the expression 
for p(x) is already normalized. 

Otherwise (as was the case of the chain), we can determine the 
normalization constant by summing up one of the marginals 
(relatively inexpensive because only one variable is involved). 



x1 x2 x3

x4

fa fb

fc

Sum-product algorithm example

 Let    !p x( ) = fa x1, x2( ) fb x2 , x3( ) fc x2 , x4( )

Declare x3 as 
root node. 

x1 x2 x3

x4

fa fb

fc

First we pass messages 
from leaves to root.

µx1! fa
x1( ) = 1

µ fa!x2
x2( ) = ?

x1 x2 x3

x4

fa fb

fc

 

µ fx!x x( )
factor!node
!"# $#

= !...
x1
" !! f x, x1,!...!,!xM( )

xM
" µxm! fs

xm( )
node!factor
! "# $#m#n fs( )\x

$
Recall

(red colored xi are not the same as the ones in example!) 

µx4! fc
x4( ) = 1

µ fc!x2
x2( ) = fc

x4
" x2, x4( )

x1 x2 x3

x4

fa fb

fc



x1 x2 x3

x4

fa fb

fc

µx2! fb
x2( ) = µ fa!x2

x2( )µ fc!x2
x2( )

µ fb!x3
x3( ) = fb

x2
" x2 , x3( )µx2! fb

x2( )

x1 x2 x3

x4

fa fb

fc

Summary of messages
from leaves to root

µx1! fa
x1( ) = 1

µ fa!x2
x2( ) = fa

x1

" x1, x2( )

µx4! fc
x4( ) = 1

µ fc!x2
x2( ) = fc

x4

" x2 , x4( )

µx2! fb
x2( ) = µ fa!x2

x2( )µ fc!x2
x2( )

µ fb!x3
x3( ) = fb

x2

" x2 , x3( )µx2! fb
x2( )

x1 x2 x3

x4

fa fb

fc

µ fa!x2
x2( ) = fa

x1
" x1, x2( )

µx4! fc
x4( ) = 1

µ fc!x2
x2( ) = fc

x4
" x2 , x4( )

µx2! fb
x2( ) = µ fa!x2

x2( )µ fc!x2
x2( )

µ fb!x3
x3( ) = fb

x2
" x2 , x3( )µx2! fb

x2( )

µx1! fa
x1( ) = 1 x1 x2 x3

x4

fa fb

fcµx3! fb
x3( ) = 1

µ fb!x2
x2( ) = fb

x3
" x2 , x3( )

Candidate for third 
and fourth?

Next we pass messages 
from root to leaves. 



x1 x2 x3

x4

fa fb

fc

µx2! fa
x2( ) = µ fb!x2

x2( )µ fc!x2
x2( )

µ fa!x1
x1( ) = fa

x2
" x1, x2( )µx2! fa

x2( )

Lets go towards x1 first.

Note use of saved message 
from going the other way. 

Also, note that arrows define 
which link to exclude, and 
who gets the message. Factors 
are included irrespective of the 
direction of the blue arrows.

x1 x2 x3

x4

fa fb

fc

µx2! fc
x2( ) = µ fa!x2

x2( )µ fb!x2
x2( )

µ fc!x4
x4( ) = fc

x2

" x2 , x4( )µx2! fc
x2( )

(similar to previous one)

x1 x2 x3

x4

fa fb

fc

Summary of messages
from root to leaves.

µx3! fb
x3( ) = 1

µ fb!x2
x2( ) = fb

x3

" x2, x3( )

µx2! fa
x2( ) = µ fb!x2

x2( )µ fc!x2
x2( )

µ fa!x1
x1( ) = fa

x2

" x1, x2( )µx2! fa
x2( )

µx2! fc
x2( ) = µ fa!x2

x2( )µ fb!x2
x2( )

µ fc!x4
x4( ) = fc

x2

" x2, x4( )µx2! fc
x2( )

x1 x2 x3

x4

fa fb

fc

 

An illustrative check

!p x2( ) = µ fa!x2
x2( )µ fb!x2

x2( )µ fc!x2
x2( )

= fa
x1

" x1, x2( )µx1! fa
x1( )#

$%
&

'(
fb

x3

" x2 , x3( )µx3! fb
x1( )#

$%
&

'(
fc

x4

" x2 , x4( )µx4! fc
x1( )#

$%
&

'(

= fa
x1

" x1, x2( )#

$%
&

'(
fb

x3

" x2 , x3( )#

$%
&

'(
fc

x4

" x2 , x4( )#

$%
&

'(

= fa
x4

"
x3

"
x1

" x1, x2( ) fb x2 , x3( ) fc x2 , x4( )

= !p x( )
x4

"
x3

"
x1

"



Handling observed variables

Usually we have observed variables (e.g., evidence). We simply 
clamp those variables to their observed values. 

More formally, denote hidden variables by h, and observed ones by v.
Denote the observed value as v̂. For each observed variable, vi ,
with value v̂i , we can introduce factors into the graph

I vi ,!v̂i( )= 1       if  vi =!v̂i
0      otherwise

!
"
#

$#

Then, p h,v = v̂( ) = p h,v( ) I vi ,!v̂i( )
i
%

(needs to be normalized to get p h v̂( ),  but this
is easy since we are doing sum-product.)

Adds factor        
nodes, i.e.,        


