
Max-sum algorithm

Method to compute. 

xmax = argmax
x

p x( )

i.e.,   p xmax( ) = max
x

p x( )

Helpful facts

First, note that. 
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Second, note that. 
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Recall inference on chains

x1 x2 xN−1 xN

p x( ) =! 1,2 x1, x2( )! 2, 3 x2 , x3( )!!!...!!!! N"2,N"1 xN"2 , xN"1( )! N"1,N xN"1, xN( )

Naive compution of argmax
x

p x( )  

would evauate the above for each value of x, 
and take the max. 

Too expensive!!
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Recall speeding up marginalization

What if we could do with max() what we are doing with!?
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Max on chains
x1 x2 xN−1 xN
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Max-sum algorithm

Two steps.
     1) Compute the max while remembering certain computations
     2) Compute a value of x that achieves the max

The message passing algorithm for step (1) is clear from the 
analog with the “sum-product” algorithm, except that it would 
then be called the “max-product” algorithm. 

Computing long products looses precision (*), so we switch to 
log(), and call it the max-sum algorithm.

(*) Less of an issue with marginalization. 

Max-sum algorithm (preliminaries)

Note that

And we have

ln max
x

p x( )( )( ) = maxx ln p x( )( )( )

ln max ab,ac( )( ) = max log ab( ), log(ac)( )
= max ln a( ) + ln b( ), ln a( ) + ln c( )( )
= ln a( ) + max ln b( ) + ln c( )( )

(In general, max x + y, x + z( ) = x + max(y, z))

Can also get this from taking logs of product version,
namely:     max ab,ac( ) = a !max b,c( ),  for a " 0)

Max-sum algorithm

Develop using the analogy with the sum-product algorithm

Sums become max() and products become sums (over logs)

We will use the same notation for messages, but the semantics is a 
bit different (as above) and the quantities are always logs. 



Sum product on a slide
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Max-sum algorithm

Develop using the analogy with the sum-product algorithm

µ f!x x( ) = max
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Recall that in sum-product:  µ fx!x x( )
factor!node
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Max-sum algorithm

Working now in analogy with the sum-product algorithm

For initialization at leaf nodes
µ f!x x( ) = 0
and
µx! f x( ) = ln f x( )( )

Max-sum algorithm

Working now in analogy with the sum-product algorithm

To compute the max using the choosen root node,
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Max-sum algorithm

Now we need to find an x where p() reaches the max.

This does not have an exact analogy in the sum-product algorithm.

Why we do not know x yet:
 

The factor-to-node messages takes a distribution for the 
maxima over the upstream variables, and multiplies it by the 
factor (sum using logs), and reports a new distribution.

We do not yet know which value in the new distribution will 
be part of the maximum (it is not necessarily argmax of the 
reported distribution).  

Max-sum algorithm

Can passing messages backwards find the arg max?
 

At the root node, which is a product (sum in logs), when we find the 
maximum, we can easily record the argmax for that node’s variable, and 
it will be a valid for a particular maximizing configuration. 
 
In analogy with sum-product, we might be tempted to send messages 
backwards to “finish the job” to get values for the other nodes. 

But this can fail if there is more than one maximal configuration. 
You can get pieces of each one!
We are only sure that the value is part of some maximal configuration.
You could end up with an inconsistent set of values.

Max-sum algorithm

Adjustment to forward message passing for “backtracking:”
 

The factor-to-node operations store the dependencies for the 
various choices of xi . 

Then, once the node-to-factor backtracking expresses a choice, a 
consistent set of values for xi for the max can be found.

For example, suppose the root node could choose either setting 
its variable to 2 or 3,  2. Then it sends to the incoming nodes, 
the value “2”. Those nodes need to know how their incoming 
links have maximized to get the value for “2” passed to the root.

Max-sum algorithm (back-tracking)

In more detail, when we compute
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This records the downstream choices for any upstream choice of x.
0 x( )  stored M values for each value of x. 

Then, once we know the overall max, we can recover a set of
xi  that leads to it by backtracking. 



Product (sum in logs) of the incoming 
messages (e.g. p(x1) and p(x2)) and 
the factor (e.g. p(x3 | x1, x2)). 

x1

x3

x5

x4

x2

x3

Two values give the same max. The 
root needs to choose one and sends 
its choice back towards the leaves.

Look up stored back pointer 
for the back-traced value. 
This back pointer,         , has 
indices of the variables, x1 
and x2, that correspond to 
the chosen max. 

Max over all variables except x3. 
If there are duplicates (e.g., dark 
blue), then we choose one. Each 
chosen max (magenta dots) is 
associated with a back pointer 
for that slice,           . ! x( )

Max-sum in pictures

Product 
(sum in logs)

The stored values for the 
argmax() for x3 are now 
passed back to the source 
of x1 and x2.

! x( )


