
Announcements
Next on the agenda --- study some commonly used models 

(Naive Bayes, clustering (e.g. GMM), temporal clustering (e.g. 
HMM))

Learning these models from data will motivate the EM 
algorithm for inference.

(Last part of the course will develop sampling based inference 
methods). 

Naive Bayes

Suppose categories indexed by c, and features represented
in a vector x.

Assume features in x are independent given the category.

(Feature independence is the “naive” part).

p x c( )  = p xi c( )
i
!

Naive Bayes

p x,c( )  = p c( ) p xi c( )
i
!

Graphical model is: z
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Naive Bayes

p x,c( )  = p c( ) p xi c( )
i
!

Note that:

The forms of  p xi c( )  need not all be the same (but often are)

If p x c( )  is a Gaussian, then it has diagonal covariance matrix.
(This simplifying assumption is nearly always needed
with Gaussians if the dimension, D, is large).



Naive Bayes

Typically,  p xi c( ) come from training data linked to known
(labeled) classes (supervised learning).

Example (1) fit a univariate Gaussian to each variable, xi ,
for each class, c. 

Example (2), record a histrogram for each variable, xi ,
for each class, c. 

Inference using Naive Bayes

p x c( )  = p xi c( )
i
! (forward model)

p c x( )!"! p x c( ) p c( ) (the Bayes part)

This leaves us with simple, and often very effective
model and associated inference. We combine the 
likelihood p x c( ) with the prior p c( )  over categories.

Naive Bayes for face identification

• Example features
- Location, color, texture, of left eye
- Location, color, texture,  of right eye
- Location, color, texture,  of mouth
- Location, color, texture,  of nose

• We can imagine training these with different facial expressions, lighting 
conditions, etc. 

• Notice that these are not independent. 
• This sort of thing often works pretty well anyway.

• Possible explanation is that, while the model allows for the eyes to be 
different, this rarely occurs in training or testing data. 

Clustering

Clustering is the canonical case of “unsupervised” learning.

Given the data, what are the categories (clusters), c?

(Given a cluster, the features might be independent like 
Naive Bayes, or they might not be).

We will focus on clustering based on statistical models, but
first review clustering in general. 



Why is clustering hard?

• The number of possible clusterings is exponential in the number of data points

• The number of clusters (and a good way to check) is usually not known
• A good distance function between points may not be known
• A good model explaining the existence of clusters may not be known.
• High dimensionality

Main reason

Other important issues

Clustering based on distance measure

• Most common data representation is an N dimensional “feature” vector.
• Most common distance is Euclidian distance.

• Be careful with scaling and units! 
• Probabilistic models can finesse scaling and multiple modalities

• Problems with correlated variables can be mitigated using 
transformations and data reduction methods such as PCA, ICA.

Clustering approaches
• Agglomerative clustering

– initialize: every item is a cluster
– attach item that is “closest”  to a cluster to that cluster
– repeat

• Divisive clustering (e.g., ncuts)
– split cluster along best boundary
– repeat recursively

• Clustering by optimizing a heuristic criterion (e.g., K-means)
– e.g., small within variance

• Probabilistic clustering
– define a probabilistic grouping model
– use statistical inference to fit the model

Simple agglomerative approaches

• Point-Cluster or Cluster-Cluster distance 
– single-link clustering (minimum distance from point to points in clusters 

or among pairs of points, one from each cluster)
– complete-link clustering (maximum) 
– group-average clustering (average)
– (terms are not important, but concepts are worth thinking about)

• Dendrograms
– classic picture of output as clustering process continues



K-Means

• Choose a fixed number of clusters (“K”)

• Choose cluster centers (means) and point-cluster allocations 
(membership) to minimize the error 

• x’s could be any set of features for which we can compute a 
distance (careful with scaling)
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K-Means

• Want to minimize

• Cannot do this optimization by search, because there are too many 
possible allocations.

• Standard difficulty which we handle with an iterative process (chicken 
and egg)
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K-Means algorithm (intuition)
• If we know the cluster centers, the best cluster for each point is easy to 

compute 
– Just compute the distance to each to find the closest

• If we know the best cluster for each point, the cluster centers are also easy to 
compute
– Just average the points in each cluster

• Algorithm
– 1) Guess one of the two.
– 2) Alternatively re-compute the values for each



Guess
the means

Guess 
membership

OR

Assume means are fixed. 
Find cluster 
with closest 
mean for 
each 
point

Assume membership is 
fixed. Take averages
 to get cluster 
centers 
(means)

Choose K
K-means flow chart

K-means using
color alone,
11 segments
(four shown).

Notes on K-Means

• K-means is “hard” clustering. This means that each point is completely in 
exactly one cluster 

• What you get is a function of starting “guess” 

• The error goes down with every iteration
– This means you get a local minimum, but not necessarily a global one.

• Unfortunately, the dimension of the space is usually large, and high-
dimensional space has lots of room for local maximum (standard problem!)
– Dimensionality here is K*dim(x)

• Finding the global minimum for a real problem is very optimistic!

you should be able to 
argue why this is true


