
Clustering using a generative statistical model

Associate each cluster with (usually) the same model type, 
but with different parameters.

Example (Gaussian Mixture Model (GMM)),  
p x c( ) = ! uc ,"c( )

or, assuming feature independence, 

p x c( ) = ! uc ,# c
2
c( )

p x c( )could also be a product of independent multinomials,
or, even a product of different distributions (roll your own!).

Clustering using a generative statistical model

These models are quite straight-forward to apply if we know the 
parameters.

In addition, establishing the model parameters is usually easy if we 
know the correspondence (e.g., we have labeled data). 

(We have already seen both these case with Naive Bayes). 

However, “clustering” implies learning the model without knowing the 
correspondence. 

Doing this is a new kind of inference (missing value problem) that is 
different from max-sum and max-product. 
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Clustering using a generative statistical model

Graphical model                        (and for independent features)
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(We saw this one when we 
discussed Naive Bayes)

Inference given a clustering

Given a learned clustering model (either supervised or
unsupervised), we can compute a posterior probability
of which cluster an instance belongs to.

p c x( )! p x c( ) p c( )

Easily normalized since the number of clusters is finite:

p c x( ) = p x c( ) p c( )
p x c( ) p c( )

c
"



Generative story (should be familiar)

1) choose a cluster with probability, p(c).

2) sample from p x c( ).
3) rinse and repeat.
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Distribution modeled by 
3 multivariate Gaussians. 

Clustering models representing data statistics

p x( ) = p x,c( )
c
!

= p c( ) p x c( )
c
!

What is the distribution of data described by clusters?
(Example, data coming from a bimodal distribution?)

This gives the 
distribution for 
one datum

Clustering models representing data statistics

p x( ) = p x,c( )
c
!

= p c( ) p x c( )
c
!

p xi{ }( ) = p xi( )
i
" = p c( ) p xi c( )

c
!

i
"

What is the distribution of data described by clusters?
(Example, data coming from a bimodal distribution?)

The distribution 
for a data set

Clustering models representing data statistics

Distribution modeled by 
3 multivariate Gaussians. 

Even if we know the exact model, we 
cannot be sure from the data which 
point comes from which cluster. We 
only have the distribution for this. 
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p xi{ }( ) = p xi( )
i
! = p c( ) p xi c( )

c
"

i
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Learning the parameters from data

For concreteness, assume GMM

Assume K clusters

The goal is to learn mixing coefficients, p(c),  and cluster
parameters for p x c( ) !for all K clusters indexed by c.

Learning the parameters from data

The goal is to learn mixing coefficients, p(c),  and cluster

parameters for p x c( ) !for all K clusters indexed by c.

From previous arguments, given  p x c( ), we know the
distribution over clusters for each data point.

We simultaneously cluster points and learn the cluster model.

Learning the parameters from data

Probability of all observed data will be the objective function. It is:

p xi !( ) = p c( ) p xi c,!c( )
c
"

p xi{ }!( ) = p c( ) p xi c,!c( )
c
"#$%

&
'(i

)          (want this to be large)

or

log p xi{ }!( )( ) = log p c( ) p xi c,!c( )
c
"#$%

&
'(i

"        (should be large)

Expectation Maximization (EM)

Operationally this is similar to K-means.

Observe that:

If we knew the cluster assignments,
   we could estimate the parameters for p x c( ).

If we knew p x c( ),  we could make cluster

      assignments by computing the distribution p c x( )



Expectation Maximization (EM)

Difference with K-means.

We have distributions over the assignments,  p(c | x).

This leads us to work with expectations.

Guess model 
parameters

Guess distribution 
over correspondence OR

Assume model is fixed. 
Find correspondence  
probabilities (e.g., 
the extent each
point is in 
each cluster).

Assume correspondence 
distribution is fixed. Update 
model parameters 
using max 
likelihood

Initialize
EM flow chart

M E

EM for GMM

 
p(x) = p(c)p

c
! (x | c)!!!!!!!!!where!!!!!!p(x | c) = ! µc ,!c( )

! = !c{ }
And, for multiple points

p( xi{ } !) = p(c)p
c
" (x | c)#

$%
&
'(i

)

This is our objective function.

Assume we have estimates for the probability distribution over 
clusters for each point (the “egg”). Specifically we have: 

p(c | xi ,!
(s ) )       (s indexes interation (step)).

EM for GMM

These are called the responsibilities.

This is the extent to which each cluster explains the point. (Every 
point is in every cluster to some degree).  
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Responsibilities illustrated

Points colored according the 
the degree that they are 
explained by the red, green, 
or blue clusters.

Points colored according 
to whether they were 
generated by the red, 
green, or blue clusters 
(normally not known).

Points colored according 
to whether they were 
generated by the red, 
green, or blue clusters 
(normally not known).

Observed points without 
cluster information. 

• We estimate the mean for each cluster naturally by:

• Variances/covariances work similarly

 

µc
(s+1) =

xi !i! p(c | xi ,!c
(s ) )

i=1

n"
p(c | xi ,!c

(s ) )
i=1

n"
     (weighted average)

Iteration (step)

EM for GMM

• Also, intuitively, 

We can sort out the chicken!

EM for GMM

p c( ) =
p c xi ,!

(s )( )
i
"

p c xi ,!
(s )( )

i
"

c
"

=
p c xi ,!

(s )( )
i
"

N

EM for GMM

 

p(c | xi ,!
(s ) ) = " c

(s ) !i! p(xi |!c
(s ) )

" #c
(s ) !i! p(xi |! #c

(s ) )
#c
$       (Note that we select !c

(s ) from !(s ).

where " c
(s ) = p c !c

(s )( )   i.e.,   " c
(s )  is part of !c

(s ).

This is the cluster membership discussed before,

with less formal notation: p c x( )% p c( ) p x c( )

We can do the egg!

Given the parameters (the chicken), the probability that a 
given point is associated with each cluster is computed by:
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EM illustrated


