
EM (more formally)

Semi-optional technical material alert!

The formal treatment helps us use EM correctly in more
complex situations. However, EM algorithms for many
problems can “guessed at” using intuition.

The more formal treatment is not needed for the homework.

• Assume K clusters. Index over clusters by k, over points by n.

• New notation for cluster membership:

EM (more formally)

For each point, n, zn is a vector of K values where exactly one

zn,k = 1, and all others are 0. Note that zn,k
k
! = 1.

• Denote cluster priors by:

• Denote the responsibilities that each cluster has for each
point by:

EM (more formally)

! zn,k() " p zn,k = 1 xn ,#
(s)() = $ k ! p xn zn,k = 1,!#k

(s)()
$ %k ! p xn zn, %k = 1,!# %k

(s)()
%k
&

! k " p zk = 1()

EM (more formally)

Represent the entire data set of N points, xn ,
as a matrix X with rows xn

T .

Represent the latent variable assignments with a matrix Z.
(For the true assignment, each row is zero except for a single
element that is 1.)

We call Z,X{ } the complete data set (everthing is known).

The observed data, X{ }, is called the incomplete data set.

EM (more formally)
We assume that computing the MLE of parameters,

!
argmax log p Z,X !(){ }{ }

with complete data is relatively easy.

Recall our intuitive treatment of EM for GMM. If we knew the
cluster membership, we would know how to compute the means.

Since we did not know the cluster membership we did a
weighted computation.

EM (more formally)

Notice the complexity of the incomplete log likelihood:

log p X !()() = log " k ! p xn !()
k
#$%&

'
()

nasty sum in log
! "## $##n

#

By constrast, for complete log likelihood we can incorporate the assignment by:

p X,Z !() = " k
zn ,k p xn !(){ }

k
*

n
* zn ,k

So

log p X,Z !()() = zn,k ! log " k() + log p xn !()()(){ }
k
#

n
#

(No nasty sum in log; well suited for the expectation calculation).

EM (more formally)

For the E step, we compute the responsibilities which is straightforward.

Next, define Q ! (s+1),! (s)() = p Z X,! (s)()
Z
" !log p X,Z ! (s+1)()()

(Expectation of log p X,Z ! (s+1)()() over p Z X,! (s)()).

The M step then computes ! (s+1) =argmax
!

Q ! (s+1),! (s)(){ }

Maximizing Q is generally feasible and corresponds to the
intuitive development.

General EM algorithm

1. Choose initial values for ! (s=1)

(can also do assignments, but then jump to M step).

2. E step: Evalute p Z X,! (s)()
3. M step: Evalute ! (s+1) = argmax

!
Q ! (s+1),! (s)(){ }

where Q ! (s+1),! (s)() = p Z X,! (s)()
Z
" !log p X,Z ! (s+1)()()

4. Check for convergence; If not done, goto 2.

! At each step, our objective function increases unless it is
at a local maximum. It is important to check this is
happening for debugging!

General EM algorithm

! At each step, our objective function (conditioned on the
current model) increases unless it is at a local maximum.
It is important to check this is happening for debugging!

Recall our objective function for the case of a mixture model:

p X!()= p k()p xn !k()
k
"

n
#

or

log p X!()()= log p k()p xn !k()
k
"

$

%
&

'

(
)

n
"

Implementation tip. This is
conveniently available from the
computation of responsibilities
(before normalization).

Evalute ! (s+1) =argmax
!

Q ! (s+1),! (s)(){ }
where Q ! (s+1),! (s)() = p Z X,! (s)()

Z
" !log p X,Z ! (s)()()

Recall that log p X,Z !()() = zn,k ! log # k() + log p xn !k()()(){ }
k
"

n
"

So Q ! (s+1),! (s)() = p Z X,! (s)()
Z
" ! zn,k ! log # k() + log p xn !k()()(){ }

k
"

n
"

Deriving the GMM M-step

Q ! (s+1),! (s)() = p Z X,! (s)()
Z
" ! zn,k ! log # k() + log p xn !k()()(){ }

k
"

n
"

=! p Z X,! (s)()
Z
" ! zn,k ! log # k() + log p xn !k()()(){ }

inner sum
! "######### $#########k

"
n
"

Deriving the GMM M-step

This exchanging of summing order says that instead of summing over points and clusters
for all correspondences Z, we sum over all correspondences for a given point and cluster.

We will focus on the inner sum.

()

Z
! "

z3
! !

z2
!

z1
! ()

zN
!

Z is all possible correspondences. To generate them all more explicitly, we can
consider the first point. For each possible assignment of the first point, we then
need all possible combinations of the other points. To get that, we consider all
possible assignments of the second point, together with all possible
assignments of the remaining points. This shows:

p Z •() = p zi •()
zi
!

Further, because the points are independent, we have:

Note that a sum over zn is short hand for a sum over cluster assignments
for point n. Hence each of the sums on the right are over clusters.

i()

zn
! " i()

kn=1

K

!

p Z X,! (s)()
Z
" !i zn,k i log # k() + log p xn !k()()()

inner sum from previous
! "######## $########

= $$$
k2=1

K

"
k1=1

K

" p zi,ki xi ,!
(s)()i zn,k i log # k() + log p xn !k()()()

i
%

kN =1

K

"

= p zn,kn
xi ,!

(s)() i zn,k i log # k() + log p xn !k()()() i $$$
k2=1

K

"
k1=1

K

" $$$
kn+1=1

K

"
kn&1=1

K

" p zi,ki xi ,!
(s)()

i'n
%

kN =1

K

"
All possibilities without point n. Since it covers all cases, this evaluates to unity!
! "######## $########kn=1

K

"

pedantically,

= p zn,kn
xi ,!

(s)() i zn,k i log # k() + log p xn !k()()() i
kn=1

K

"

p z1,k1
x1,!

(s)() p z2,k2
x2,! (s)() $$$

k2=1

K

"
k1=1

K

" p zn&1,kn&1
xn&1,!

(s)() p z2,k2
xi ,!

(s)() $$$
kn+1=1

K

"
kn&1=1

K

" p zN ,kN
xN ,! (s)()

kN =1

K

"

= p zn,kn
xi ,!

(s)() i zn,k i log # k() + log p xn !k()()()
kn=1

K

"

p Z X,! (s)()
Z
" !i zn,k i log # k() + log p xn !k()()()

inner sum from previous
! "######## $########

= $$$
k2=1

K

"
k1=1

K

" p zi,ki xi ,!
(s)()i zn,k i log # k() + log p xn !k()()()

i
%

kN =1

K

"

= p zn,kn
xi ,!

(s)() i zn,k i log # k() + log p xn !k()()() i $$$
k2=1

K

"
k1=1

K

" $$$
kn+1=1

K

"
kn&1=1

K

" p zi,ki xi ,!
(s)()

i'n
%

kN =1

K

"
All possibilities without point n. Since it covers all cases, this evaluates to unity!
! "######## $########kn=1

K

"

= p zn,kn
xi ,!

(s)() i zn,k i log # k() + log p xn !k()()()
kn=1

K

"

= p zn,k = 1 X,! (s)() log # k() + log p xn !k()()()

= (zn,k() log # k() + log p xn !k()()() (definition of (zn,k(), the responsibility)

Q ! (s+1),! (s)() = p Z X,! (s)()
Z
" ! zn,k ! log # k() + log p xn !k()()(){ }

k
"

n
"

= ! $ zn,k()! log # k() + log p xn !k()()(){ }
k
"

n
"

We need to maximize this with respect to the parameters for each
cluster, k. Notice that:

!
!"

k#
Q " (s+1)," (s)() = $ z

n,k*() !
!"

k#
! log %

k*() + log p xn "k*()()()&
'
(

)(

*
+
(

,(n
-

Deriving the M-step

(The values of k not of current interest, i.e., not k*, die)

!
!µk

Q " (s+1)," (s)() = # zn,k()! !!µk

log $ k() + log p xn "k()()()%
&
'

(
)
*n

+

= # zn,k()! !!µk

log p xn "k()()()%
&
'

(
)
*n

+

zn,k()! !!µk

log , xn µk ,!-k()()()%
&
'

(
)
*n

+

Example—deriving the GMM M-step

! xn µk ,!"k() = 1
2#()D /2 "k

1/2 exp $ 1
2
xn $ µk()T "k

$1 xn $ µk()%
&'

(
)*

log ! xn µk ,!"k()() = log 1
2#()D /2 "k

1/2

$

%
&

'

(
) *

1
2
xn * µk()T "k

*1 xn * µk()

!
!µk

log " xn µk ,!#k()() = #k
$1 xn $ µk()

Example—deriving the GMM M-step

(exercise for the interested)

!
!µk

Q " (s+1)," (s)() = # zn,k()! !!µk

log $ xn µk ,!%k()()()&
'
(

)
*
+n

,

!
!µk

Q " (s+1)," (s)() = 0 means that

zn,k()!%k
-1 xn - µk(){ }

n
, = 0 (Inner sigma is precision matrix, not a sum).

zn,k()! xn - µk(){ }
n
, = 0 (Multiply by %k)

Example—deriving the GMM M-step

So, ! zn,k()! xn " µk(){ }
n
= 0

and µk ! zn,k(){ }
n
= ! zn,k()! xn(){ }

n
#

and µk =
! zn,k()! xn(){ }

n
#

! zn,k(){ }
n
#

 (same as before)

Example—deriving the GMM M-step

Finding variances/covariances is similar.

Finding the mixing coefficients is also similar, except we
also need to enforce that they sum to one.

(Here the equations for the k’s are coupled).

So we use Lagrange Multipliers.

Example—deriving the GMM M-step

