
Finding variances/covariances is similar. 

Finding the mixing coefficients is also similar, except we 
also need to enforce that they sum to one. 

(Here the equations for the k’s are coupled).

So we use Lagrange Multipliers.

Example—deriving the GMM M-step Using Lagrange Multipliers
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Note that differentiating with respect to ", and setting the 
result to zero puts the constraint into the equations. 

But the real problem is doing the optimization under
the constraint.
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Using Lagrange Multipliers

 

!f !!g

!f = "!g

So,  ! f # "g( ) = 0

or,   ! f + "g( ) = 0       (negate ")

Using Lagrange Multipliers
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  as before.

• For GMM we need to consider clusters that have essentially one point:

• Easily fixed by adding a constant to the variance (prior).

EM in practice
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• Tying parameters (using GMM as an example)
– Depending on the problem, it may make sense to assume that 

the variances (or covariances) for all clusters are the same by 
reducing the number of parameters.

• This reduces the number of parameters, reducing the risk of over-fitting
– Updates work as you expect. Instead of multiple weighted 

sums, you just use one big one. 
– In general, you would not tie variances over dimensions 

unless you know that the variables are semantically equivalent
• Recall that one advantage of GMM over K-means is that the scale 

differences among dimensions is naturally taken care through the 
variance parameters
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• You must check that the log likelihood increases! 
• A simple way to compute it during an iteration:
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Recall our objective function:

p X( )= p k( )p xn k( )
k
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Consider how we might compute the responsibilities
# n,k( )$p k( )p xn k( )
(Then normalize once you have them all).

So, make a running sum of the unormalized values 

• Precision problems --> must work with logs
• But we need to exponentiate to normalize --> rescaling tricks
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Let  P= pi{ }.

Suppose we want Q= 1
pi

i
! pi{ }

Where we need to use V = log pi( ){ }
and exp pi( )  is too small, and the sum of them might be zero.  

Let M = max log pi( ){ }

Observe that working with "V = log pi( )#M{ }  does the trick.


