EM in practice (continued) EM (Straight Forward Implementation)

* Memory problems ---> we can compute means, etc., as running
totals so that we do not need to store responsibilities for all points
over all clusters.

State transfer
of size O(N*K)

EM (scalable) EM (parallelized)
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Analysis of EM

* Maximizing the Q function provided a new parameter
estimate which increased the likelihood

e Showing this typically uses Jensen’s inequality

— Bishop (§9.4), instead, uses the fact that the KL.
divergence between two distributions is non-negative,
but showing this also uses Jensen’s.

* Given a bounded likelihood, this means the algorithm
converges to a stationary point

— Typically a local maximum but examples where it is a
saddle point can be constructed.

Analysis of EM

*  We will sketch the summary provided in the online resource
“The Expectation Maximization Algorithm: A short tutorial”
by Sean Borman

 This follows “The EM Algorithm and Extensions” by
Geoffrey McLachlan and Thriyambakam Krishnan.

* See also Bishop (§9.4)
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Figure 1: f is conver on [a.b] if f(Axy + (1 — Nao) < Af(xy) + (1 — A) f(a2)
Vay,ag € [a.b], A e [0,1].
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More generally, if f is convex, then, for

A, 20, and Z;Li =1

we have

f(zi:lixijszi:/lif(xi)

(Jensen's inequality)




Result from calculas (prove via mean value theorem)

If f is twice differentiable on [a,b] and f” >0 on [a,b],

then f(x) is convex on [a,b].

Notice that f(x) =—log(x) is convex

Proof?
7=
X
F(3)=
X

f (Zlixij < Zii f (xl.) (Jensen's inequality)

log(Zlixij > Z),i log(x;)  (~log(x) is convex)

Working with bounds allows us to do
something with the nasty sum in the log().

In EM, we seek 0 to maximize L(6)= lnP(X|9)

Suppose at step n we have L(On)

L(6) — L(6,) = In (Z P(X|z, 9)7>(z|9)> —InP(X|0,).
z
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L) — L(6,) = In <ZP(X\ZA0)P(Z\6)> —InP(X[6,)

P(z|X, 0,
= <Z7J (X|z,0)P PaX. 9’)> —InP(X0,)
(X|z,0)P(z|0)
= In <;P(Z|X49” PIX.0,) >71 P(X|0,)
(X|z,0)P(z|0) ,
> Zp(z\x.en)h ( P ) ) P(Xl6.)  (Jensen’s)

|

(9|(}” )

’Notice that this is our Q function ‘

In P(

6,)= 21nP(X|0 )P(z]x.8,)
because P(X|9 ) does not depend on z,

and Y P(2|X.6,)=1
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L(@) > L(an) + A(9|9n)

A7

1(6010) = L(6n) + A(6]6))

L (9) > l (9 ’ Hn) . [We will see that maximizing [ ( n) will give the ]

same 6 ,, as maximizing Q (proof in a few slides)

0

Note that A( )

)
,)=L(6,)

(proof on next slide)
and that / ( )
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Proof that A (6,

,)=0 and thus (6,

,)=L(6,)

l(0n|6n) - L(Gn) + A(gnwn)

- P(X,Z.en)p(z|9n)
- L(Gn)+;P(Z|X’9”)IHP(ZIX, 0,)P(X]0,)

P(X,z|6y)
P(X,zl0,)

= L)+ ) _ P(z[X.0,)nl

= L(0x)+ > P(zX.0,)In

- L(Gn)s
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Figure 2: Graphical interpretation of a single iteration of the EM algorithm:
The function 1(0)6,,) is bounded above by the likelihood function L(#). The
functions are equal at # = 6,,. The EM algorithm chooses #,,.; as the value of 6
for which 1(0]6,,) is a maximum. Since L(0) > [(0|0,,) increasing 1(6]6,,) ensures
that the value of the likelihood function L(#) is increased at each step.
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Proof that maximizing / (9

911+1

9”) gives the same 6 ,, as maximizing Q

n+l
arg max {1(016,,)}

P(X|z,0)P(z|6)
P(X|0,)P(zX,6,)

Now drop terms which are constant w.r.t. ¢

arg max {L(H,,) + EZ: P(z|X,6,)In

details on next slide
arg max ZP(Z\X.(),,)lnP(X\z‘())P(z\())

<ll(-,lll(jL\{;p(zx'e”)hl Pled) P(0)

} (def’n conditional probability)

arg max {Z P(z|X,0,) nP(X, z|€))}

Z
argmax g
)

\
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Algebra for “drop terms which are constant w.r.t. 0

P(X|z,0)P(2|0)
;P(z\x,en)m P(X‘Bn)P(z X,0,)
=Y P(2x.6,)nP(X|z.0)P(0)- 3. P(2/X.6, ) n P(X[6,/P(X.6,)

These ones do not matter for argmax()
0

Summary

Jensen's provides a lower bound for the likelihood, L(8)
0,).

in terms of a current 6,, namely [ (On

The max of [ (9 found

by maximizing the Q function

On) is reached at the same 0

n+l

Since 1(9
L(6,.)> (6

Gn) is a lower bound for 8,

6,)21(6,l6,)=1(8,)

because we maximized

n+l n+l

In other words, L(8) goes up (or stays the same)

with the successive 0 found by EM.




