
• Memory problems ---> we can compute means, etc.,  as running 
totals so that we do not need to store responsibilities for all points 
over all clusters.

EM in practice (continued) EM (Straight Forward Implementation)
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• Maximizing the Q function provided a new parameter 
estimate which increased the likelihood

• Showing this typically uses Jensen’s inequality
– Bishop (§9.4), instead, uses the fact that the KL 

divergence between two distributions is non-negative, 
but showing this also uses Jensen’s.

• Given a bounded likelihood, this means the algorithm 
converges to a stationary point
– Typically a local maximum but examples where it is a 

saddle point can be constructed. 

Analysis of EM

• We will sketch the summary provided in the online resource 
“The Expectation Maximization Algorithm: A short tutorial” 
by Sean Borman

• This follows “The EM Algorithm and Extensions” by 
Geoffrey McLachlan and Thriyambakam Krishnan.

• See also Bishop (§9.4)

Analysis of EM

From “The Expectation Maximization 
Algorithm: A short tutorial” by Sean Borman

More generally, if f  is convex, then, for

!i " 0,   and  !i
i
# = 1

we have

f !i xi
i
#$%&

'
()
* !i f

i
# xi( )

(Jensen's inequality)



Result from calculas (prove via mean value theorem)

If f  is twice differentiable on [a,b] and !!f " 0  on [a,b],  
then f (x) is convex on [a,b].

Notice that f x( ) = ! log x( )  is convex

Proof?

"f x( ) = ! 1
x

""f x( ) = 1
x2
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Working with bounds allows us to do 
something with the nasty sum in the log(). 

From “The Expectation Maximization 
Algorithm: A short tutorial” by Sean Borman

In EM, we seek !  to maximize  L !( ) = lnP X !( )

Suppose at step n we have L !n( )



From “The Expectation Maximization 
Algorithm: A short tutorial” by Sean Borman

(Jensen’s)

ln P X !n( ) = lnP X !n( )P z X,!n( )
z
"

because P X !n( )  does not depend on z, 
and P z X,!n( )

z
" = 1

Notice that this is our Q function

From “The Expectation Maximization 
Algorithm: A short tutorial” by Sean Borman

Note that ! "n "n( ) = 0

and that l "n "n( ) = L "n( )
(proof on next slide)

We will see that maximizing  l ! !n( )  will give the

same !n+1  as maximizing Q    (proof in a few slides)
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From “The Expectation Maximization 
Algorithm: A short tutorial” by Sean Borman

Proof that ! "n "n( ) = 0  and thus   l "n "n( ) = L "n( )

From “The Expectation Maximization 
Algorithm: A short tutorial” by Sean Borman



From “The Expectation Maximization 
Algorithm: A short tutorial” by Sean Borman

Q-function

Proof that maximizing  l ! !n( )  gives the same !n+1  as maximizing Q

details on next slide

(def’n conditional probability)

     

P z X,!n( )
z
" ln

P(X z,! )P(z ! )

P(X !n )P(z X,!n )

= P z X,!n( )
z
" lnP(X z,! )P(z ! )# P z X,!n( )

z
" lnP(X !n )P(z X,!n )

These ones do not matter for argmax()
!

! "###### $######

Algebra for “drop terms which are constant w.r.t. !”

Summary

 

Jensen's provides a lower bound for the likelihood, L(! )

in terms of a current !n ,  namely l !n !n( ).

The max of l ! !n( )  is reached at the same !n+1  found

by maximizing the Q function

Since  l ! !n( )  is a lower bound for ! ,

L(!n+1) "  l !n+1 !n( ) " l !n !n( )
because we maximized

! "### $###
= L(!n )

In other words, L(! ) goes up (or stays the same)
with the successive !  found by EM. 


