M step for HMM

We assume the E step computed distributions for
The degree each state explains each data point (analogous to GMM responsibilities). $\quad \gamma\left(z_{n}\right)=p\left(z_{n} \mid X, \theta^{(s)}\right)$

The degree that the combination of a state, and a previous one explain two data points.

EM for HMM (sketch)

Doing the maximization using Lagrange multipliers gives us
$\pi_{k}=\frac{\gamma\left(z_{1 k}\right)}{\sum_{k^{\prime}} \gamma\left(z_{1 k^{\prime}}\right)}$
Much like the GMM. Taking the partial derivative for π_{k} kills second and third terms.
$A_{j k}=\frac{\sum_{n=2} \zeta\left(z_{n-1, j}, z_{n k}\right)}{\sum_{k^{\prime}} \sum_{n=2} \zeta\left(z_{n-1, j}, z_{n k^{\prime}}\right)}$

EM for HMM (sketch)

$\log (p(X, Z \mid \theta))=\sum_{k=1}^{K} z_{1 k} \log \left(\pi_{k}\right)+\sum_{n=2}^{N} \sum_{j=1}^{K} \sum_{k=1}^{K} z_{n-1, j} z_{n, k} \log \left(A_{j, k}\right)+\sum_{n=1}^{N} \sum_{k}^{K} z_{n, k} \log \left(p\left(x_{n} \mid \phi_{k}\right)\right)$

By analogy with the GMM

$$
\begin{aligned}
Q\left(\boldsymbol{\theta}^{(s+1)}, \boldsymbol{\theta}^{(s)}\right) & =\sum_{Z} p\left(Z \mid \boldsymbol{\theta}^{(s)}\right) \log \left(X, Z \mid \theta^{(s+1)}\right) \\
& =\sum_{k=1}^{K} \gamma\left(z_{1, k}\right) \log \left(\pi_{k}\right)+\sum_{n=2}^{N} \sum_{j=1}^{K} \sum_{k=1}^{K} \xi\left(z_{n-1, j} z_{n, k}\right) \log \left(A_{j, k}\right)+\sum_{n=1}^{N} \sum_{k}^{K} \gamma\left(z_{n k}\right) \log \left(p\left(x_{n} \mid z_{n}, \phi\right)\right)
\end{aligned}
$$

EM for HMM (sketch)

The maximization of $p\left(x_{n} \mid \phi\right)$ is exactly the same as the mixture model.

For example, if we have Gaussian emmisions, then
$\mu_{k}=\frac{\sum_{n} x_{n} \gamma\left(z_{n k}\right)}{\sum_{n} \gamma\left(z_{n k}\right)}$

E step for EM for HMM

Computing the E step is a bit more involved.
Recall that in the mixture case it was easy because we only needed to consider the relative likelihood that each cluster independently explain the observations.

However, here the sequence also must play a role.

Graphical model for the E step

Note that our task is to compute marginal probabilities

Computing marginals in an HMM

Various names, flavors, notations, ...
Forward-Backward algorithm
Alpha-beta algorithm
Sum-product for HMM
(Bishop also says "Baum Welch" but that is a synonym for the EM algorithm as whole).

Alpha-beta algorithm

$$
\begin{aligned}
\gamma\left(z_{n}\right) & =p\left(z_{n} \mid X\right) \\
& =\frac{p\left(X \mid z_{n}\right) p\left(z_{n}\right)}{p(X)} \\
& =\frac{p\left(x_{1}, \ldots, x_{n} \mid z_{n}\right) p\left(x_{n+1}, \ldots, x_{N} \mid z_{n}\right) p\left(z_{n}\right)}{p(X)} \\
& =\frac{p\left(x_{1}, \ldots, x_{n}, z_{n}\right) p\left(x_{n+1}, \ldots, x_{N} \mid z_{n}\right)}{p(X)} \\
& =\frac{\alpha\left(z_{n}\right) \beta\left(z_{n}\right)}{p(X)}
\end{aligned} \begin{aligned}
& \text { Where we define } \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \beta\left(z_{n}\right)=p\left(x_{n}, \ldots, x_{n}, z_{n}\right)=p\left(x_{n+1}, \ldots, x_{N} \mid z_{n}\right)
\end{aligned}
$$

Expressing alpha recursively

$$
\begin{aligned}
\alpha\left(z_{n}\right) & =p\left(x_{1}, \ldots, x_{n}, z_{n}\right) & \\
& =p\left(x_{1}, \ldots, x_{n} \mid z_{n}\right) p\left(z_{n}\right) & \text { (definition of "|") } \\
& =p\left(x_{n} \mid z_{n}\right) p\left(x_{1}, \ldots, x_{n-1} \mid z_{n}\right) p\left(z_{n}\right) & \text { (conditional independence) } \\
& =p\left(x_{n} \mid z_{n}\right) p\left(x_{1}, \ldots, x_{n-1}, z_{n}\right) & \text { (definition of "|") } \\
& =p\left(x_{n} \mid z_{n}\right) \sum_{z_{n-1}} p\left(x_{1}, \ldots, x_{n-1}, z_{n-1}, z_{n}\right) & \text { (marginal) } \\
& =p\left(x_{n} \mid z_{n}\right) \sum_{z_{n-1}} p\left(x_{1}, \ldots, x_{n-1}, z_{n} \mid z_{n-1}\right) p\left(z_{n-1}\right) & \text { (definition of "|") } \\
& =p\left(x_{n} \mid z_{n}\right) \sum_{z_{n-1}} p\left(x_{1}, \ldots, x_{n-1} \mid z_{n-1}\right) p\left(z_{n} \mid z_{n-1}\right) p\left(z_{n-1}\right) & \text { (conditional } \\
& =p\left(x_{n} \mid z_{n}\right) \sum_{z_{n-1}} p\left(x_{1}, \ldots, x_{n-1}, z_{n-1}\right) p\left(z_{n} \mid z_{n-1}\right) & \text { (definition of "|") } \\
& =p\left(x_{n} \mid z_{n}\right) \sum_{z_{n-1}} \alpha\left(z_{n-1}\right) p\left(z_{n} \mid z_{n-1}\right) & \text { (definition of } \alpha\left(z_{n}\right) \text {) }
\end{aligned}
$$

Alpha-beta algorithm

Similarly, we can derive a recurrence relation for beta
$\beta\left(z_{n}\right)=\sum_{z_{n+1}} \beta\left(z_{n+1}\right) p\left(x_{n+1} \mid z_{n+1}\right) p\left(z_{n+1} \mid z_{n}\right)$

Expressing alpha recursively

$$
\alpha\left(z_{n}\right)=p\left(x_{n} \mid z_{n}\right) \sum_{z_{n-1}} \alpha\left(z_{n-1}\right) p\left(z_{n} \mid z_{n-1}\right)
$$

This is a recursive evaluation of alpha. So we can compute all of them easily if we know the first one, $\alpha\left(z_{1}\right)$.

```
\alpha(z})=p(\mp@subsup{x}{1}{},\mp@subsup{z}{1}{})\quad (we defined \alpha (znn)=p(\mp@subsup{x}{1}{},\ldots.,\mp@subsup{x}{n}{},\mp@subsup{z}{n}{})
    =p(z
\alpha(\mp@subsup{z}{1}{}\mp@subsup{)}{k}{}=\mp@subsup{\pi}{k}{}p(\mp@subsup{x}{1}{}|\mp@subsup{\phi}{k}{})
```


Alpha-beta algorithm

The details for $\beta\left(z_{n}\right)=\sum_{z_{n+1}} \beta\left(z_{n+1}\right) p\left(x_{n+1} \mid z_{n+1}\right) p\left(z_{n+1} \mid z_{n}\right)$

$$
\begin{aligned}
\beta\left(\mathbf{z}_{n}\right) & =p\left(\mathbf{x}_{n+1}, \ldots, \mathbf{x}_{N} \mid \mathbf{z}_{n}\right) \\
& =\sum_{\mathbf{z}_{n+1}} p\left(\mathbf{x}_{n+1}, \ldots, \mathbf{x}_{N}, \mathbf{z}_{n+1} \mid \mathbf{z}_{n}\right) \\
& =\sum_{\mathbf{z}_{n+1}} p\left(\mathbf{x}_{n+1}, \ldots, \mathbf{x}_{N} \mid \mathbf{z}_{n}, \mathbf{z}_{n+1}\right) p\left(\mathbf{z}_{n+1} \mid \mathbf{z}_{n}\right) \\
& =\sum_{\mathbf{z}_{n+1}} p\left(\mathbf{x}_{n+1}, \ldots, \mathbf{x}_{N} \mid \mathbf{z}_{n+1}\right) p\left(\mathbf{z}_{n+1} \mid \mathbf{z}_{n}\right) \\
& =\sum_{\mathbf{z}_{n+1}} p\left(\mathbf{x}_{n+2}, \ldots, \mathbf{x}_{N} \mid \mathbf{z}_{n+1}\right) p\left(\mathbf{x}_{n+1} \mid \mathbf{z}_{n+1}\right) p\left(\mathbf{z}_{n+1} \mid \mathbf{z}_{n}\right) .
\end{aligned}
$$

Alpha-beta algorithm

Our recurrence relation for beta
$\beta\left(z_{n}\right)=\sum_{z_{n+1}} \beta\left(z_{n+1}\right) p\left(x_{n+1} \mid z_{n+1}\right) p\left(z_{n+1} \mid z_{n}\right)$

We can compute the betas if we know the last one.

$$
\begin{aligned}
p\left(z_{N} \mid X\right) & =\frac{\alpha\left(z_{N}\right) \beta\left(z_{N}\right)}{p(X)} \\
& =\frac{p\left(X, z_{N}\right) \beta\left(z_{N}\right)}{p(X)} \quad\left(\text { we defined } \alpha\left(z_{n}\right)=p\left(x_{1}, \ldots, x_{n}, z_{n}\right)\right) \\
& =p\left(z_{N} \mid X\right) \beta\left(z_{N}\right)
\end{aligned}
$$

$$
\text { So } \beta\left(z_{N}\right)=1
$$

Alpha-beta algorithm

Given the alphas and betas, we can compute all the quantities we need for the E step.

$$
\begin{aligned}
& \gamma\left(z_{n}\right)=p\left(z_{n} \mid X\right)=\frac{p\left(X \mid z_{n}\right) p\left(z_{n}\right)}{p(X)}=\frac{\alpha\left(z_{n}\right) \beta\left(z_{n}\right)}{p(X)} \quad \text { (our definition) } \\
& \text { We know that } \sum_{z_{n}} \gamma\left(z_{n}\right)=1 \\
& \text { (summing over the states) } \\
& \text { so } \sum_{z_{n}} \frac{\alpha\left(z_{n}\right) \beta\left(z_{n}\right)}{p(X)}=1 \\
& \text { (for all } \left.z_{n}\right) \\
& \text { and } p(X)=\sum_{\eta} \alpha\left(z_{n}\right) \beta\left(z_{n}\right) \\
& \text { (for all } \left.z_{n}\right)
\end{aligned}
$$

We do not need $p(X)$ for EM, but it is the likelihood which we want to monitor $\left(p(X)=p\left(X \mid \theta^{(s)}\right)\right)$.

Computing marginals, version two

We can apply sum-product to our E step graph.

Factor graph

(Directed graph for reference)

Simplified factor graph

(Canonical factor graph from previous slide)

Since we condition on all the x's, we can simplify the graph by treating the emissions as constants, and putting them into the factors for the z 's to get a simple chain.

Review of sum-product concepts

The marginal for each node is a product of the incoming messages.

This is analogous to setting up the marginal as a product of alpha and beta factors in the previous treatment.

Since we have a chain, this is just two messages, one coming from the left, the other from the right.

To compute all marginals, we pass the left and right messages from one end to the other.

Sum-product for HMM

$$
h=p\left(z_{1}\right) \underbrace{p\left(x_{1} \mid z_{1}\right)}_{\begin{array}{c}
\text { extra for the } \\
\text { nodes we } \\
\text { pruned }
\end{array}}
$$

Sum-product for HMM

$$
\begin{aligned}
& h=p\left(z_{1}\right) p\left(x_{1} \mid z_{1}\right) \\
& f_{n}=p\left(z_{n} \mid z_{n-1}\right) \underbrace{p\left(x_{n} \mid z_{n}\right)}_{\substack{\text { extra for } \\
\text { pruned } \\
\text { nodes }}}
\end{aligned}
$$

Sum-product for HMM

The nodes all have at most two links (it is a chain) so they just pass the incoming message to the outgoing link.

$$
\text { i.e., } \quad \mu_{f_{n} \rightarrow z_{n}}\left(z_{n}\right)=\mu_{f_{n} \rightarrow f_{n+1}}\left(z_{n}\right)
$$

The nodes also (metaphorically) is where we think of the messages being stored if we are computing multiple marginals (which we are in this case).

Sum-product for HMM

Factor node actions on left to right messages

$$
\mu_{f_{n} \rightarrow f_{n+1}}\left(z_{n}\right)=\sum_{z_{n-1}} f_{n}\left(z_{n-1}, z_{n}\right) \mu_{f_{n-1} \rightarrow f_{n}}\left(z_{n-1}\right)
$$

The first message is

$$
h=p\left(z_{1}\right) p\left(x_{1} \mid z_{1}\right)=p\left(x_{1}, z_{1}\right)=\alpha\left(z_{1}\right)
$$

Sum-product for HMM

If we identify $\mu_{f_{n} \rightarrow f_{n+1}}\left(z_{n}\right)=\alpha\left(z_{n}\right)$

$$
\begin{aligned}
\alpha\left(z_{n}\right) & =\sum_{z_{n-1}} f_{n}\left(z_{n-1}, z_{n}\right) \alpha\left(z_{n-1}\right) \\
& =\sum_{z_{n-1}} p\left(z_{n} \mid z_{n-1}\right) p\left(x_{n} \mid z_{n}\right) \alpha\left(z_{n-1}\right) \\
& =p\left(x_{n} \mid z_{n}\right) \sum_{z_{n-1}} p\left(z_{n} \mid z_{n-1}\right) \alpha\left(z_{n-1}\right) \quad \text { (as before) }
\end{aligned}
$$

Sum-product for HMM

Factor node actions on right to left messages

$$
\mu_{f_{n+1} \rightarrow f_{n}}\left(z_{n}\right)=\sum_{z_{n+1}} f_{n+1}\left(z_{n}, z_{n+1}\right) \mu_{f_{n+2} \rightarrow f_{n+1}}\left(z_{n+1}\right)
$$

Identify $\beta\left(z_{n}\right) \equiv \mu_{f_{n+1} \rightarrow f_{n}}\left(z_{n}\right)$ to get

$$
\beta\left(z_{n}\right)=\sum_{z_{n+1}} f_{n+1}\left(z_{n}, z_{n+1}\right) \beta\left(z_{n+1}\right)
$$

Sum-product for HMM

We have re-derived the alpha-beta version of forward-backward

Forward

$$
\begin{aligned}
& \alpha\left(z_{1}\right)=p\left(z_{1}\right) p\left(x_{1} \mid z_{1}\right) \\
& \alpha\left(z_{n}\right)=p\left(z_{n}| |_{n}\right) \sum_{z_{n-1}} p\left(z_{n} \mid z_{n-1}\right) \alpha\left(z_{n-1}\right)
\end{aligned}
$$

$$
\beta\left(z_{N}\right)=1
$$

Backward

$$
\beta\left(z_{n}\right)=\sum_{z_{n+1}} p\left(z_{n+1} \mid z_{n}\right) p\left(x_{n+1} \mid z_{n+1}\right) \beta\left(z_{n+1}\right)
$$

Sum-product for HMM

Identify $\beta\left(z_{n}\right) \equiv \mu_{f_{n+1} \rightarrow f_{n}}\left(z_{n}\right)$ to get

$$
\beta\left(z_{n}\right)=\sum_{z_{n+1}} f_{n+1}\left(z_{n}, z_{n+1}\right) \beta\left(z_{n+1}\right)
$$

Recalling that $f_{n+1}=p\left(z_{n+1} \mid z_{n}\right) p\left(x_{n+1} \mid z_{n+1}\right)$

$$
\beta\left(z_{n}\right)=\sum_{z_{n+1}} p\left(z_{n+1} \mid z_{n}\right) p\left(x_{n+1} \mid z_{n+1}\right) \beta\left(z_{n+1}\right)
$$

Sum-product for HMM

Also recall that the sum product enables easy computation of the normalizer (marginalizing everything), which corresponds to
$p(X)=\sum_{z_{n}} \alpha\left(z_{n}\right) \beta\left(z_{n}\right) \quad$ (summing over clusters for any z_{n})

