
M step for HMM

We assume the E step computed distributions for

The degree each state explains each data 
point (analogous to GMM responsibilities).

The degree that the combination 
of a state, and a previous one 
explain two data points.
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Doing the maximization using Lagrange multipliers gives us
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Much like the GMM. Taking the partial 
derivative for !k kills second and third terms.

EM for HMM (sketch)

The maximization of p xn !( )  is exactly the same as the mixture model.

For example, if we have Gaussian emmisions, then 
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EM for HMM (sketch)



E step for EM for HMM

Computing the E step is a bit more involved.

Recall that in the mixture case it was easy because we 
only needed to consider the relative likelihood that each 
cluster independently explain the observations.

However, here the sequence also must play a role.  
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Graphical model for the E step

Note that our task is to compute marginal probabilities

Computing marginals in an HMM

Various names, flavors, notations, ...

Forward-Backward algorithm

Alpha-beta algorithm

Sum-product for HMM 

(Bishop also says “Baum Welch” but that is a 
synonym for the EM algorithm as whole). 

Alpha-beta algorithm
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Expressing alpha recursively
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This is a recursive evaluation of alpha. So we can compute all
of them easily if we know the first one, ! z1( ).

! z1( ) = p x1, z1( )
= p z1( ) p x1 z1( )         (this is a K dimensional vector for fixed x1)

! z1( )k = " k p x1 #k( )

(we defined ! zn( ) = p x1,...., xn , zn( )  )

Expressing alpha recursively
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Alpha-beta algorithm
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Similarly, we can derive a recurrence relation for beta 

Alpha-beta algorithm
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Alpha-beta algorithm

! zn( ) = ! zn+1( )
zn+1
" p xn+1 zn+1( ) p zn+1 zn( )

Our recurrence relation for beta 

We can compute the betas if we know the last one. 
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Alpha-beta algorithm

Given the alphas and betas, we can compute all the 
quantities we need for the E step.
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We do not need p X( )  for EM, but it is the likelihood which we

want to monitor (p X( ) = p X % (s )( )).

Alpha-beta algorithm

Given the alphas and betas, we can compute all the 
quantities we need for the E step.

(in Bishop)

Computing marginals, version two

We can apply sum-product to our E step graph.
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Factor graph
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(Directed graph for reference)
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Simplified factor graph
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Since we condition on all the x’s, we can simplify the graph 
by treating the emissions as constants, and putting them into 
the factors for the z’s to get a simple chain.

(Canonical factor graph 
from previous slide)
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Review of sum-product concepts

The marginal for each node is a product of the incoming messages.

This is analogous to setting up the marginal as a product of alpha 
and beta factors in the previous treatment.

Since we have a chain, this is just two messages, one coming from 
the left, the other from the right. 

To compute all marginals, we pass the left and right messages from 
one end to the other. 
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Sum-product for HMM

 

h = p z1( ) p x1 z1( )
extra for the
nodes we
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Sum-product for HMM

h = p z1( ) p x1 z1( )
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Sum-product for HMM

The nodes all have at most two links (it is a chain) so they 
just pass the incoming message to the outgoing link.

i.e.,    µ fn!zn
zn( ) = µ fn! fn+1

zn( )
The nodes also (metaphorically) is where we think of the 
messages being stored if we are computing multiple 
marginals (which we are in this case).
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Sum-product for HMM

Factor node actions on left to right messages
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The first message is 
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Sum-product for HMM

If we identify  µ fn! fn+1
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Sum-product for HMM

Factor node actions on right to left messages
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Sum-product for HMM
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Recalling that  fn+1 = p zn+1 zn( ) p xn+1 zn+1( )
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We have re-derived the alpha-beta version of forward-backward

Forward ! z1( ) = p z1( ) p x1 z1( )

Backward
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Sum-product for HMM

Also recall that the sum product enables easy computation of the 
normalizer (marginalizing everything), which corresponds to

p X( ) = ! zn( )" zn( )
zn
#        (summing over clusters for any  zn  )


