
State space models 

• Making some use of Murphy, chapter 18, as well as Bishop 13.3

• State space models are Like HMMs except that the states are 
continuous variables

• Example
– A kicked soccer ball traveling under the influence of gravity (ignore air 

friction for now---this soccer match is on the moon). 
– One representation of state is position and velocity (all these are 

continuous variables)

State space models 

• Notation
– At a time, t, the state vector is zt  

– At each (discrete) time point, we make measurements yt   
– The system could also be influenced by a time varying control 

signal, which we will ignore in this course.

zt = g zt!1," t( )
yt = h zt ,# t( )
where " t  is the "system noise" and 
# t  is the "observation noise"

Linear dynamical systems (LDS) 

• Special case of state-space models where the transition 
function g() is linear, and all random processes are Gaussian
– Also known as linear-Gaussian SSM (LG-SSM)

     

zt = Atzt!1 + " t       where  " t ! N (0,Qt )  and A is a transition matrix
yt = Ctzt +# t        where  # t ! N (0, Rt ) 
where " t  is the "system noise" and  # t  is the "observation noise"

Often we assume that the parameters do not change over time. 
This is known as a stationary model. Here, 
At = A      Ct = C       Qt = Q      Rt = R      

Linear dynamical systems (LDS) 

• For example, let z be the position in 2D of a hockey puck 
on the ice, moving with constant velocity. 

• What is A?  

 

Ignoring noise, we have

Xt = Xt!1 +Vt!1 i "t

Vt = Vt!1    
A =

1 !t
1 !t
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Linear dynamical systems (LDS) 

• For example, let z be the position in 2D of a hockey puck 
on the ice, moving with constant velocity. 

• If the ice is rough, then z might be buffeted about. Then our 
system noise component becomes relevant 

• (sometimes called random acceleration model)

 

Xt = Xt!1 +Vt!1 i "t  +  # t

Vt = Vt!1  +  # t

Linear dynamical systems (LDS) 

• Finally, the observations are a linear function of the state 
variable, with added Gaussian noise. But perhaps we only 
measure position. Then   

yt = C zt +! t

Where   C= 1 0 0 0
0 1 0 0
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LDS computational problems

Given data, what is the LDS (learning).

Given an LDS, what is the distribution over the state 
variables. Also, how likely are the observations, given the 
model (how good is the model). 

Unlike an HMM, the Gaussian posterior for LDS means 
the most likely state sequence for the data is simply the 
most likely states computed from the previous.

LDS computational problems

Learning the LDS can be accomplished by EM in analogy 
with HMM, as well as other means.

Traditionally, given an LDS, the distribution over the 
state variables is computed using the Kalman filter and the 
Kalman smoother (like alpha and beta respectively). 



Conventionally, the Kalman filter is analogous to computing
the rescaled alphas

!̂ zn( ) = p zn x1,..., xn( ) = ! zn( )
p x1,..., xn( )

and the Kalman smoother is analogous to computing the products

" zn( ) = !̂ zn( )#̂ zn( )

Recall that #̂ zn( ) = p xn+1,..., xN zn( )
p xn+1,..., xN x1,..., xn( )

The complete log likelihood

In analogy with HMM, we have

    

p X ,Z !( ) = p z1( ) p zn zn"1( )
n=2
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Manipulating Gaussians

Recall that for multivariate Gaussians, if we partition the 
variables into two sets, x and y, then:

     

p x y( ) ! N ( )

p x( ) = p x,y( )
y
! ! N ( )

Manipulating Gaussians

In addition, if 

then

     

p x( ) = N x µ ,!"1( )
p y x( ) = N y Ax + b,L"1( )

p x,y( ) = p x( ) p y x( ) ! N ( )



Manipulating Gaussians

More specifically (from Bishop p. 91), if

then

where

    

p x( ) = N x µ ,!"1( )
p y x( ) = N y Ax + b,L"1( )
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Kalman filtering/smoothing

Using these rules, you can easily convince yourself that the 
joint probability of all the LDS variables is one big Gaussian.

The filtering/smoothing messages (alpha/beta) enable fast 
computation of the marginals.

We will do the alphas briefly

Kalman filtering

In analogy with the rescaled version of the alpha/beta algorithm:

    

cn!̂ zn( ) = p xn zn( ) !̂ zn"1( )# p zn zn"1( )dzn"1

Denote !̂ zn( ) = N zn µn ,Vn( )  to get 

cnN zn µn ,Vn( ) = N xn Czn ,$( ) N zn Azn"1( )# N zn"1 µn"1,Vn"1( )dzn"1

= N xn Czn ,$( )N zn Aµn"1,Pn"1( )

where       Pn"1 = AVn"1A
T + %    , using rules about manipulating Gaussians.



Kalman filtering

Applying Gaussian manipulations and Matrix inversion 
formulas (see Bishop page 696):

    

µn = Aµn!1 +K n xn !CAµn!1( )
Vn = I !K nC( )Pn!1

cn = N xn CAµn!1,CPn!1C
T + "( )

where      K n =  Pn!1C
T CPn!1C

T + "( )!1

(This is the Kalman gain matrix)

Kalman filtering

For completeness, the initial values are:

    

µ1 = Aµ0 +K1 x1 !Cµ0( )
V1 = I !K1C( )V0

c1 = N x1 Cµ0 ,CV0C
T + "( )

where      K1 =  V0C
T CV0C

T + "( )!1

Kalman filtering

Despite the tedious details, the result is somewhat intuitive. 
Consider the update of the mean:

The new mean is the propagated previous one, with a correction 
using the new evidence. 

The Kalman gain matrix is a factor of the relation between state 
variables and observations (C), and the variances. It can be 
computed in advance of data.

    

µn = Aµn!1

Believing the model,
ignoring the observation

! +K n xn ! CAµn!1

Where we think we 
should see xn

"#$ %$

"

#

$
$
$

%

&

'
'
'

Kalman filtering/smoothing

Kalman filtering by itself makes sense if you are tracking an object on-
line and in real time. 

However, the future observations can improve the estimates made by 
only considering the past.

The second pass computes the posterior as function of both.

This is the “smoother” which is analogous to the beta pass. 

For details see the rest of Bishop 13.3.1.

    

µn = Aµn!1

Believing the model,
ignoring the observation

! +K n xn ! CAµn!1

Where we think we 
should see xn
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