
Sampling based inference

• Resources.
– Bishop, chapter 11
– Koller and Friedman, chapter 12
– Andrieu et al. (linked on lecture page).

• Koller and Friedman uses “particles” terminology 
instead of “samples”.

Sampling based inference

• We have studied two themes in inference.
– Marginalization / expectation / summing out or integration
– Optimization

• Two flavors of activities
– Fitting (inference using a model)
– Learning (inference to find a model)

• These activities are basically the same in the generative 
modeling approach.

Motivation for sampling methods

• Real problems are typically complex and high dimensional.

• Example, images as evidence for stuff in the world 

Motivation for sampling methods

• Real problems are typically complex and high dimensional.

• Suppose that we could generate samples from a distribution 
that is proportional to one we are interested in. 

 

Typical case we are often interested in is  p ! D( )

p ! D( ) = p !( ) p D !( )
p D( )

Consider  !p z( ) = p !( ) p D !( )



Motivation for sampling methods

• Generally, ! lives in a very high dimensional space.

• Generally, regions of high           is very little of that space. 

• IE, the probability mass is very localized.

• Watching samples from          should provide a good 
maximum (one of our inference problems)

  !p z( )

  !p z( )

Motivation for sampling methods (II)

• Now consider computing the expectation of a function  
over           . 

• Recall that this looks like 

• A bad plan for computing E: 

 p z( )
 f z( )

Ep(z ) f[ ] = f z( )
z
! p z( )dz

Discretize the space where z lives into L blocks

Then compute Ep(z ) f[ ] ! 1
L

p z( ) f z( )
l=1

L

"

Motivation for sampling methods (II)

• Now consider computing the expectation of a function  
over           . 

• Recall that this looks like 

• A better plan, assuming we can sample  

 p z( )
 f z( )

 

Given independant samples z(l )  from !p z( )

Estimate    Ep(z ) f[ ] ! 1
L

f z( )
l=1

L

"

Ep(z ) f[ ] = f z( )
z
! p z( )dz

  !p z( )

 Challenges for sampling

 

In real problems sampling p z( )   is very difficult.

We typically do not know the normalization constant, Z. 
(So we need to use  !p z( )).

Even if we can draw samples, it is hard to know if (when)
they are good, and if we have enough of them. 

Evaluating !p z( )  is generally much easier (although, it can 
also be quite involved). 



 Sampling framework

 

We assume that sampling from !p z( )  is hard, but that 
evaluating !p z( )  is relatively easy. 

We also assume that the dimension of z is high, and that
 !p z( )  may not have closed form (but we can evaluate it).

We will develop the material in the context of computing 
expections, but sampling also supports picking a good answer, 
such as a MAP estimate of parameters.

 Basic Sampling (so far)

• Uniform sampling (everything builds on this)

• Sampling from a multinomial

• Sampling for selected other distributions (e.g., Gaussian)
– At least, Matlab knows how to do it.

• Sampling univariate distributions using the inverse of the 
cumulative distribution (recall from HW 2). 

 Basic Sampling (so far)

• Sampling univariate distributions using the inverse of the 
cumulative distribution. 

p(y)

h(y)

y0

1

 Basic Sampling (so far)

• Sampling directed graphical models using ancestral sampling. 



 Rejection Sampling

 

Assume that we have an easy to sample function, ,
and a constant, k,  where we know that  p z( ) ! kiq z( ).

1) Sample  q z( )

2) Keep samples in proportion to 
p z( )
kiq z( )    and reject the rest.

z0 z

u0

kq(z0) kq(z)

�p(z)

 Rejection Sampling

 

1) Sample  q z( )

2) Keep samples in proportion to 
p z( )
kiq z( )    and reject the rest.

 Rejection Sampling

• Rejection sampling is hopeless in high dimensions, but is 
useful for sampling low dimensional “building block” 
functions.

• E.G., the Box-Muller method for generating samples from a 
Gaussian uses rejection sampling.
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A second example where a 
gamma distribution is 
approximated by a Cauchy 
proposal distribution.

 Rejection Sampling

• For complex functions, a good q() and k may not be available.

• One attempt to adaptively find a good q() (see Bishop 11.1.3)

z1 z2 z3 z

ln p(z)
(For log 
concave 
functions)



p(z) f(z)
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Importance Sampling

Rewrite Ep(z ) f[ ] = f z( ) p z( )! dz

= f z( ) p z( )
q z( ) q z( )! dz

" 1
L

p z(l )( )
q z(l )( ) f z(l )( )

l=1

L

#         where samples come from q z( )

Importance Sampling (unnormalized)

 
p z( ) = !p z( )

Zp

    and   q z( ) = !q z( )
Zq

 

Ep(z ) f[ ]! 1
L

p z(l )( )
q z(l )( ) f z(l )( )

l=1

L

"        (samples from q z(l )( ), equivalently,  !q z(l )( ))

!
Zq

Zp

1
L

!p z(l )( )
!q z(l )( ) f z(l )( )

l=1

L

"

=
Zq

Zp

1
L

!rl f z(l )( )
l=1

L

"           (introducing  !rl =
!p z(l )( )
!q z(l )( ) )

Importance Sampling (unnormalized)

 

Zp = !p z( )! dz

Zp

Zq

=
!p z( )
Zq

! dz =
!p z( )
!q z( )! q z( )dz (because  Zq =

!q z( )
q z( ) )

" 1
L

!rl
l=1

L

#                (samples coming from !q z(l )( ))

Importance Sampling (unnormalized)

 

Ep(z ) f[ ]! Zq

Zp

1
L

!rl f z(l )( )
l=1

L

"             (samples coming from !q z(l )( ))

and   
Zp

Zq

! 1
L

!rl
l=1

L

"                        (samples coming from !q z(l )( ))

so      Ep(z ) f[ ]!
!rl f z(l )( )

l=1

L

"
!rl

l=1

L

"
       (samples coming from !q z(l )( ))

where    !rl =
!p z(l )( )
!q z(l )( )



Importance sampling for graphical models
(from Koller and Friedman)

We know how to sample from directed graphical models 
where no variables are observed or conditioned on. 

Suppose we want to use sampling to compute p(Y = y).

p(Y = y) ! 1
L

I
l
" y(l ), y( )      (samples from p(y))

where I y(l ), y( ) = 1   if   y(l ) = y
0  otherwise

#
$
%

&%

Importance sampling for graphical models
(from Koller and Friedman)

We know how to sample from directed graphical models 
where no variables are observed or conditioned on. 

What about the case of a particular value of a subset of the variables.

EG, we might want to sample:!!!! p Y E = e( )
or, we might want to evaluate:    p y = Y E = e( )

Importance sampling for graphical models
(from Koller and Friedman)

EG, we might want to sample:!!!! p Y E = e( )
or, we might want to evaluate:    p y = Y E = e( )

A fool-proof plan is to sample  p(y,e), and reject e ! E

(Potentially very expensive!) 

Importance sampling for graphical models
(from Koller and Friedman)

A natural idea is to use ancestral sampling on the graph,
where we set E=e. 

Kollar and Friedman develop this as sampling from the 
"mutilated" Bayesian network. 



Mutilating graphical models
(from Koller and Friedman)

Set grade to g2 and 
intelligence to i1, 
and remove links.

Importance sampling for graphical models
(from Kollar and Friedman)

A natural idea is to use ancestral sampling on the graph,
where we set E=e. 

However, when E=e, this can influence the correct 
sampling of Y, and we have ignored this!

Instead, we use samples from the mutilated network
for the proposal distribution in importance sampling .

Importance sampling for graphical models
(from Koller and Friedman)

p y e( )
q y e( ) =

PBN y e( )
PMBN y e( ) =

PBN y,e( )
PMBN y,e( )

p y e( ) ! 1
L

PBN y,e( )
PMBN y,e( )l

" I Y = y( )      (samples from PMBN Y ,e( ) )


