Markov chain Monte Carlo methods

The approximations of expectation so far have assumed that
the samples are independent draws.

This sounds good, but in high dimensions, we do not know
how to get good independent samples from the distribution.

MCMC methods drop this requirement.

Basic intuition

— If you have finally found a region of high probability, stick around for
a bit, enjoy yourself, grab some more samples.

Markov chain Monte Carlo methods

Samples are conditioned on the previous one (this is the
Markov chain).

MCMC is generally a good hammer for complex, high
dimensional, problems.

Main downside is that it is not “plug-and-play”

— Doing well requires taking advantage to the structure of your problem

— MCMC tends to be expensive (but take heart---there may not be any
other solution, and at least your problem is being solved).

Metropolis Example

We want samples z”, 77, ...

Again, write p(z) = p(z)/Z
Assume that q(z’z(”’”)) can be sampled easily
Also assume that g( ) is symmetric, .., q(z,]25)=q(z4]2, )

FOr example, q (Z’Z(Prev)) ~ N(Z, Z(Pryv) ,62 )

Metropolis Example

While not_bored

{
Sample q (Z|Z(PVEV) )
Accept with probability A(z, z“’"”)) =min| 1,— P ((ng)v)
p(e)
If accept, emit z, otherwise, emit 77",
¥

If things get better, always accept. If
they get worse, sometimes accept.




Metropolis Example

Note that

A(z,zw")) = min[l,—ﬁ(z((lig)v))} = min[l,%}

We do not need to normalize p(z)

Metropolis Example
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Green follows accepted proposals
Red are rejected moves.

Markov chain view

Denote an initial probability distribution by p(z“))

Define transition probabilities by:

T(:7.2)=p(zJz”™)  (a probability distribution)

T =T,( ) can change over time, but for now, assume that it

it is always the same (homogeneous chain)

A given chain evolves from a sample of p(z(”), and is

an instance from an essemble of chains.

Stationary Markov chains

Recall that our goal is to have our Markov chain emit samples
from our target distribution.

This implies that the distribution being sampled at time #+/
would be the same as that of time ¢ (stationary).

If our stationary (target) distribution is p(), then if imagine an
ensemble of chains, they are in each state with (long-run)
probability p().

— On average, a switch from s1 to s2 happens as often as going from s2
to s1, otherwise, the percentage of states would not be stable

If our stationary (target) distribution is p(), what do the
transition probabilities look like?




Detailed balance

* Detailed balance is defined by:

p(2)T(2.2')=p()T (' .2)
(We assume that T(-)>0)

* Detailed balance is a sufficient condition for a stationary
distribution.

* Detailed balance is also referred to as reversibility.

Detailed balance implies stationary
p(z)= z ()T (Z.2) (marginalization)

()T (Z2)=p" " ()T (2,2) (assuming detailed balance)

P)=Zp()1(22) = X (T ()= P () BT (2:)= 9™ (2)

This is 1

antica 7,7 )= Zlz)= p(z',z)=M=
Pedantically Z‘T(W) ;p( ) 2 p(z)  p(2)

Always true (a conditional probability is a probability)

Hence, detailed balance implies the distribution is stationary.

Detailed balance (cont)

* Detailed balance (for p()) means that if our chain was

generating samples from p(), it would continue to due so.

— We will address how it gets there shortly

* Does the Metropolis algorithm have detailed balance?

Metropolis Example

‘While not_bored

{
Sample q( z| z“’"“v))
Accept with probability A(z, z(”’”)) = min| 1,2 ((Z)
Iod prev)
P(Z )
If accept, emit z, otherwise, emit z”".
¥




Metropolis Example

Recall that in Metropolis,  A(z,7')= min[l, r(2) j

For detailed balance, we need to show
p(2)q(2l2')A(z.2') = p(2)q(Z]z) A(2'2)

Probability of transition from z’ to z is the
probability that 7’ is proposed, and it is accepted.

Metropolis Example

Ergodic chains
Different starting probabilities will give different chains

We want our chains to converge (in the limit) to the same
stationary state, regardless of starting distribution.

Such chains are called ergodic, and the common stationary
state is called the equilibrium state.

Ergodic chains have a unique equilibrium.

When do our chains converge?

Important theorem tells us that (for finite state spaces*) our chains
converge to equilibrium under two relatively weak conditions.

(1) Irreducible

— We can get from any state to any other state
(2) Aperiodic

— The chain does not get trapped in cycles

These are true for detailed balance with T>0 which is sufficient,
but not necessary for convergence.

*Infinite or uncountable state spaces introduces additional complexities.




Evolution of ergodic chains

Let p"”’(z) be the distribution at some time (e.g., initial distribution)
Let 7z(z) be the stationary distribution
Let p(2) = 7(2)- A7)

Note that the elements of p“*"(z) and 7(z) sum to one,

and thus the elements of A(z) sum to zero.

Note also that A(z) is not a probablity.

Evolution of ergodic chains

Let p"”’(z) be the distribution at some time (e.g., initial distribution)
Let 7z(z) be the stationary distribution
Let p"'(z) = n(z)- A (z2)
P2 =2p"(@) T(27)
- SR T(22)- LA (e
= =

=7(z)-A""(2)

Evolution of ergodic chains

P(H])(Z) — me (Z,) T(Z,Z’)
= Zﬁ(z') T(z,z')—ZA“)(z') T(z,7)

=7 (2)- A" (2)

Claim that [A”(z)| < (1-v)'

.. T(z,7) (see final, optional
where v = mzm r]{(llgo 77;( Z) problem #5)

and we have 0O<v<l1




