
Markov chain Monte Carlo methods

• The approximations of expectation so far have assumed that 
the samples are independent draws. 

• This sounds good, but in high dimensions, we do not know 
how to get good independent samples from the distribution.

• MCMC methods drop this requirement.

• Basic intuition
– If you have finally found a region of high probability, stick around for 

a bit, enjoy yourself, grab some more samples.

Markov chain Monte Carlo methods

• Samples are conditioned on the previous one (this is the 
Markov chain). 

• MCMC is generally a good hammer for complex, high 
dimensional, problems. 

• Main downside is that it is not “plug-and-play”
– Doing well requires taking advantage to the structure of your problem

– MCMC tends to be expensive (but take heart---there may not be any 
other solution, and at least your problem is being solved). 

Metropolis Example

 

We want samples z(1), z(2), ....

Again, write p z( ) = !p z( ) Z

Assume that  q z z( prev)( )  can be sampled easily

Also assume that q( )  is symmetric, i.e., q zA zB( ) = q zB zA( )

For example,  q z z( prev)( ) ~ " z; z( prev),! 2( )

Metropolis Example

While not_bored
{

         Sample q z z( prev)( )
         Accept with probability  A z, z( prev)( ) = min 1,

!p z( )
!p z( prev)( )
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         If accept, emit z,  otherwise, emit z( prev).
}

If things get better, always accept. If 
they get worse, sometimes accept.



Metropolis Example

Note that

A z, z( prev)( ) = min 1,
!p z( )
!p z( prev)( )
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p z( )
p z( prev)( )
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We do not need to normalize p z( )
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Metropolis Example

Green follows accepted proposals
Red are rejected moves.

Markov chain view

Denote an initial probability distribution by p z(1)( )

Define transition probabilities by:

T z( prev), z( ) = p z z( prev)( )          (a probability distribution)

T = Tm ( )  can change over time, but for now, assume that it
it is always the same (homogeneous chain) 

A given chain evolves from a sample of  p z(1)( ),  and is 

an instance from an essemble of chains. 

Stationary Markov chains

• Recall that our goal is to have our Markov chain emit samples 
from our target distribution.

• This implies that the distribution being sampled at time t+1 
would be the same as that of time t (stationary).

• If our stationary (target) distribution is p(), then if imagine an 
ensemble of chains, they are in each state with (long-run) 
probability p().
– On average, a switch from s1 to s2 happens as often as going from s2 

to s1, otherwise, the percentage of states would not be stable

• If our stationary (target) distribution is p(), what do the 
transition probabilities look like?



Detailed balance

• Detailed balance is defined by:

• Detailed balance is a sufficient condition for a stationary 
distribution.

• Detailed balance is also referred to as reversibility. 

p z( )T z, !z( ) = p !z( )T !z , z( )

(We assume that  T i( )>0)

Detailed balance implies stationary

 

 p z( ) = p !z( )T !z , z( )
!z
" !                      (marginalization)

p !z( )T !z , z( ) = p( prev) z( )T z, !z( )         (assuming detailed balance)

 p z( ) = p !z( )T !z , z( )
!z
" != p( prev) z( )T z, !z( )

!z
" = p( prev) z( ) T z, !z( )

!z
"

This is 1
! "# $#

= p( prev) z( )

Pedantically,         T z, !z( )
!z
" = p !z z( ) =

!z
" p !z , z( )

p z( ) =
p z( )
p z( )!z

" = 1

Always true (a conditional probability is a probability)
! "###### $######

Hence, detailed balance implies the distribution is stationary. 

Detailed balance (cont)

• Detailed balance (for p()) means that if our chain was 
generating samples from p(),  it would continue to due so.
– We will address how it gets there shortly

• Does the Metropolis algorithm have detailed balance?

Metropolis Example

While not_bored
{

         Sample q z z( prev)( )
         Accept with probability  A z, z( prev)( ) = min 1,

!p z( )
!p z( prev)( )
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         If accept, emit z,  otherwise, emit z( prev).
}

Same as   p z( )
p z( prev)( )



Metropolis Example

Recall that in Metropolis,      A z, !z( ) = min 1,
p z( )
p !z( )
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For detailed balance, we need to show
p !z( )q z !z( )A z, !z( ) = p z( )q !z z( )A !z , z( )

Probability of transition from z’ to z is the 
probability that z’ is proposed, and it is accepted.

Metropolis Example

Recall that in Metropolis,      A z, !z( ) = min 1,
p z( )
p !z( )
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p !z( )q z !z( )A z, !z( ) = q z !z( )min p !z( ), p z( )( )
= q !z z( )min p !z( ), p z( )( )

= p z( )q !z z( )min p !z( )
p z( ) ,1
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= p z( )q !z z( )min 1, p !z( )
p z( )
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= p z( )q !z z( )A !z , z( )  

Ergodic chains

• Different starting probabilities will give different chains

• We want our chains to converge (in the limit) to the same 
stationary state, regardless of starting distribution.

• Such chains are called ergodic, and the common stationary 
state is called the equilibrium state.

• Ergodic chains have a unique equilibrium.

When do our chains converge?

• Important theorem tells us that (for finite state spaces*) our chains 
converge to equilibrium under two relatively weak conditions.

• (1) Irreducible
– We can get from any state to any other state

• (2) Aperiodic
– The chain does not get trapped in cycles

• These are true for detailed balance with T>0 which is sufficient, 
but not necessary for convergence. 

*Infinite or uncountable state spaces introduces additional complexities. 



Evolution of ergodic chains

Let  p(t ) z( )  be the distribution at some time (e.g., initial distribution)

Let ! z( )  be the stationary distribution

Let  p(t ) z( )  =  ! z( )"  #(t ) z( )

Note that the elements of  p(t+1) z( )  and  ! z( )!sum to one, 
and thus the elements of "(z) sum to zero.

Note also that !(z) is not a probablity.

Evolution of ergodic chains

Let  p(t ) z( )  be the distribution at some time (e.g., initial distribution)

Let ! z( )  be the stationary distribution

Let  p(t ) z( )  =  ! z( )"  #(t ) z( )

p(t+1) z( ) = p(t ) !z( )
!z
" !T z, !z( )

= # !z( )
!z
" !T z, !z( )$ %(t ) !z( )

!z
" !T z, !z( )

= # z( )$ %(t+1) z( )

Evolution of ergodic chains

p(t+1) z( ) = p(t ) !z( )
!z
" !T z, !z( )

= # !z( )
!z
" !T z, !z( )$ %(t ) !z( )

!z
" !T z, !z( )

= # z( )$ %(t+1) z( )

Claim that !(t ) z( ) < 1" v( )t

where v = min
z

min
#z :$ z'( )>0

T z, #z( )
$ z( )

and we have    0 < v %1

(see final, optional 
problem #5) 


