
Markov chain Monte Carlo methods

• Sampling distributions (e.g., a posterior) supports estimating 
maximums and expectations without attempting “exact inference”

• Different from sampling methods discussed previously, MCMC 
relaxes having independent draws. 
– Independent draws would be preferred, but for complex distributions in 

high dimensions, we typically do not know how to get good independent 
samples from the distribution.

• Samples are conditioned on previous one(s)
– Explores promising parts of the space before moving on
– Associate “states” with emission of a particular sample

Review
Metropolis Example

 

Get an initial value (state) z(0)

While not_bored
{

         Sample q z z(t )( )
         Accept with probability  A z, z(t )( ) = min 1,

!p z( )
!p z(t )( )

!

"
#
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&

         If accept, emit z(t+1) = z,  otherwise, emit z(t+1) = z(t ).
}

If things get better, always accept. If 
they get worse, sometimes accept.
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Review

Visualization of an
ensemble of samplers

Evolution of ergodic chains

p(t+1) z( ) = p(t ) !z( )
!z
" !T z, !z( )

= # !z( )
!z
" !T z, !z( )$ %(t ) !z( )

!z
" !T z, !z( )

= # z( )$ %(t+1) z( )

Let  p(t ) z( )  =  ! z( )"  #(t ) z( )

Dies outCannot die!

Review



Matrix-vector representation

Chains (think ensemble) evolve according to:

 p z( ) = p !z( )
!z
" !T !z , z( )

Matrix vector representation:
p = T !p

And, after n iterations after a starting point:
p(n) = TNp(0)

Matrix representation

A single transition is given by
      p = T !p

Note what happens for stationary state:
       p* = Tp*  

So, p*  is an eigenvector with eigenvalue one. 

And, intutively, if things converge,  p* = T"p(0)

Aside on stochastic Matrices

• A right (row) stochastic matrix has non-negative entries, and 
its rows sum to one.

• A left (column) stochastic matrix has non-negative entries, 
and its columns sum to one.

• A doubly stochastic matrix has both properties. 

Aside on stochastic Matrices

• T is a left (column) stochastic matrix.
– If you are right handed, take the transpose

• The column vector, p, also has non-negative elements, that 
sum to one (sometimes this is called a stochastic vector).

• Fun facts that we did on the board
– The product of a stochastic matrix and vector is a stochastic vector. 
– The product of two stochastic matrices is a stochastic matrix.



Aside on (stochastic) Matrix powers

Consider the eigenvalue decomposition of T , T = E!E"1

   TN = E!NE"1

Since TN  cannot grow without bound, the eigenvalues
are inside ["1,1]. 

In fact, for our situation, the second biggest absolute 
value of the eigenvalues is less than one (not so easy to prove),
which also means the biggest one is 1. 

Aside on (stochastic) Matrix powers

 

We have  TN = E!NE"1
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Aside on (stochastic) Matrix powers

Write p in terms of the eigen basis

p = ai
i
! ei

e1
Tp = aie1

T

i
! ei = a1

and,       "#E$1p =

e1
T %p
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Recall that we are studying  E!"E#1p
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So,              E !"E#1p = a1e1

Aside on (stochastic) Matrix powers



Aside on (stochastic) Matrix powers

 

So,               E!"E#1p!!=!!e1 e1
T $p( )
a1

!"#
$ e1 $ p

*

In summary,  p* $ e1 together with  p*  stochastic means that E!"E#1p = p*

This is true, no mater what the initial point p is. 

So, glossing over details, we have convergence to equilibrium. 

Demo

• According to the previous, if T is a stochastic matrix, then:

p* ! TNp
(No matter what p! They all will give the same answer).

Also, p* ! e(1)

No demo, this was bonus homework.

Justification relies on Perron Frobenius!theorem  

From Wikipedia

Main points about P-F

• The maximal eigenvalue is strictly maximal (item 1). 

• The corresponding eigenvector is “simple” (item 2)

• It has all positive (or negative) components (item 3). 

• There is no other eigenvector that can be made non-negative.

• The maximal eigenvalue of a stochastic matrix has absolute 
value 1 (item 8 applied to stochastic matrix). 



Aside on (stochastic) Matrix powers

 

p* = Tp*  is an eigenvector with eigenvalue one.

We have written it as p* ! e1 because e1  is the 
eigenvector normalized to norm 1 (standard form).

Intuitively (perhaps), T will reduce any component of p 
orthogonal to p*,  and TN  will kill off such components as 
N !".

Summary

Algebraic proof

Neal ’93 provides an algebraic proof which does not rely on 
spectral theory. 

(A question on the final studies this further for those that are 
interested). 

Summary so far

• Under reasonable (easily checked and/or arranged) 
conditions, our chains converge to an equilibrium state.

• Easiest way to prove (or check) that this is the case is to show 
detailed balance.

• To use MCMC for sampling a distribution, we simply ensure 
that our target distribution is the equilibrium state.

• Variations on MCMC are mostly about improving the speed 
of convergence for particular situations. 

Summary so far

• The time it takes to get reasonably close to equilibrium 
(where samples come from the target distribution) is called 
“burn in” time. 
– I.E., how long does it take to forget the starting state.
– There is no general way to know when this has occurred.

• The average time it takes to visit a state is called “hit time”. 

• What if we really want independent samples?
– We can take every Nth sample (some theories about how long to 

wait exist, but it depends on the algorithm and distribution)


