Metropolis-Hastings MCMC method

* Like Metropolis, but now q() is not symmetric.

Metropolis-Hastings MCMC method

While not_bored

{
Sample q(z Z(”’”))
p (prev)
Accept with probability A (z ,z7 ’e")) = min(l, 5 (I;((pzn)j)(; (z |Z(pzm)v) )]
If accept, emit z, otherwise, emit 7",
¥

Does Metropolis-Hastings converge
to the target distribution?

If Metropolis-Hastings has detailed balance, then it
converges to the target distribution under weak conditions.

(The converse is not true, but generally samplers of interest
will have detailed balance).

Does Metropolis-Hastings have detailed balance?

To show detailed balance we need to show

p()q(zlz")A(z.2') = p(2)q(2]2) A< .2)

p(z’)q(z|z’)A(z,z’)=min(p(z’)q(z|z’),p(z)q z’|z))




Metropolis-Hastings comments

* Again it does not matter if we use unnormalized probabilities.

* It should be clear that the previous version, where q() is
symmetric, is a special case.

Reversible Jump MH

Suppose the dimension of your problem is not known (e.g.,
you want to estimate the number of clusters).
Sampling now includes “jumping” changes probability space
Requires a modification to Metropolis Hastings

— Reversible jump MCMC, Green 95, 03

RIMCMC is only about sampling. It does not tell you the best
number of dimensions (e.g., how many clusters).

— This must come from either the prior or the likelihood.

Gibbs sampling

* Gibbs sampling is special case of MH.

{z..})

* You might notice that the transition function, T(), varies
(cycles) over time.

— This is a relaxation of our assumption used to provide intuition about
convergence

* The proposal distribution will be cycle over p (Zn

— However, it still OK because the concatenation of the T() for a cycle
converge

Examples of Gibbs

If one can specify the conditional distributions in a way that
they can be sampled, Gibbs can be a very good method.

Typical examples include symmetric systems like the Markov
random fields we had for images.
— With a Markov property, the conditional probability can be quite simple.




Examples of Gibbs

MRF: P(x|~x)=P(x|N)
50%
50%

(From Dellaert and Zhu tutorial)

Examples of Gibbs
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Weak Affinity to Neighbors Strong Affinity to Neighbors

(From Dellaert and Zhu tutorial)

Consider a set of N variables, z,, z;, ....,z,, Gibbs says

Initialize {z{* :i=1,..,N |

While not_bored

Fori=1to N
1 1 1
Sample z{*" NP(Z,- AT ),zfﬂ,...,zfj))
. 1 1 1
Always accept (emit z=2z"",...,z5", 2" ,z0),...,25)

7u(x,[x,)
5 2

x(t)

(From Dellaert and Zhu tutorial)




Gibbs as MH

To see Gibbs as MH, consider that if was MH, then our
proposal distribution, qi(), for a given variable, i, would be

qi<z|z*):p(zi|z;) and qi(z*|z):p(z:|z\i)

And we have z, =z, because only i changes.

Gibbs as MH

A(z",z)=min| 1, 72)} (def’n of A())

=min| 1,

] (def’n of “bar”)

— min| 1,2 Jl (Gibbs)

P2, p(zi ‘Z\i)p(zi ‘Z\i)
= min(l, 1) (cancel colors using z,, = z,, , as only z, changes)
=1

Exploring the space

Algorithms like Metropolis-Hastings exhibit “random walk
behavior” if the step size (proposal variance) is small

If the step size is too big, then you get rejected too often
Adaptive methods exist (see slice sampling in Bishop)

Another approach is to combine samplers with different
properties

Combined samplers

1. Initialise (%),
2. Fori=0to N -1
— Sample u ~ U, 1.
- fu<v
Apply the MH algorithm with a global proposal.
— else

Apply the MH algorithm with a random walk proposal.




