
Metropolis-Hastings MCMC method 

• Like Metropolis, but now q() is not symmetric.

Metropolis-Hastings MCMC method 

While not_bored
{

         Sample q z z( prev)( )
         Accept with probability  A z, z( prev)( ) = min 1,

!p z( )q z( prev) z( )
!p z( prev)( )q z z( prev)( )
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         If accept, emit z,  otherwise, emit z( prev).
}

If Metropolis-Hastings has detailed balance, then it 
converges to the target distribution under weak conditions.

(The converse is not true, but generally samplers of interest 
will have detailed balance).  

Does Metropolis-Hastings converge 
to the target distribution? 

Does Metropolis-Hastings have detailed balance? 

p !z( )q z !z( )A z, !z( ) = min p !z( )q z !z( ), p z( )q !z z( )( )
= p z( )q !z z( )min q z !z( )
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= p z( )q !z z( )min 1, p !z( )
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= p z( )q !z z( )A !z , z( )

To show detailed balance we need to show 

p !z( )q z !z( )A z, !z( ) = p z( )q !z z( )A !z , z( )



Metropolis-Hastings comments 

• Again it does not matter if we use unnormalized probabilities.

• It should be clear that the previous version, where q() is 
symmetric, is a special case. 

Reversible Jump MH

• Suppose the dimension of your problem is not known (e.g., 
you want to estimate the number of clusters).

• Sampling now includes “jumping” changes probability space
• Requires a modification to Metropolis Hastings 

– Reversible jump MCMC, Green 95, 03

• RJMCMC is only about sampling. It does not tell you the best 
number of dimensions (e.g., how many clusters).
– This must come from either the prior or the likelihood. 

Gibbs sampling 

• Gibbs sampling is special case of MH.

• The proposal distribution will be cycle over 

• You might notice that the transition function, T(), varies 
(cycles) over time. 
– This is a relaxation of our assumption used to provide intuition about 

convergence
– However, it still OK because the concatenation of the T() for a cycle 

converge 

p zn zi!n{ }( )

Examples of Gibbs 

• If one can specify the conditional distributions in a way that 
they can be sampled, Gibbs can be a very good method. 

• Typical examples include symmetric systems like the Markov 
random fields we had for images.
– With a Markov property, the conditional probability can be quite simple.



Examples of Gibbs 

(From Dellaert and Zhu tutorial)

Examples of Gibbs 

(From Dellaert and Zhu tutorial)

Consider a set of N variables,  z1, !z1,! ...., zN ,!Gibbs says

Initialize zi
(0) : i = 1,...,N{ }

While not_bored  
{
         For i=1 to N
         {

                 Sample zi
(!+1)  ~ p zi z1

(!+1),..., zi"1
(!+1), zi+1

(! ),..., zM
(! )( )

                 Always accept (emit z = z1
(!+1),..., zi"1

(!+1), zi
(!+1), zi+1

(! ),..., zM
(! ) )

        }
}

(From Dellaert and Zhu tutorial)



Gibbs as MH 

qi z z
*( ) = p zi z \ i

*( )      and     qi z
* z( ) = p zi

* z \ i( )

And we have   z \ i = z \ i
*   because only i changes. 

To see Gibbs as MH, consider that if was MH, then our 
proposal distribution, qi(), for a given variable, i, would be 

Gibbs as MH 

(def’n of “bar”)

(Gibbs)

A z*,z( ) = min 1,
p z*( )qi z z*( )
p z( )qi z* z( )

!

"
#
#

$

%
&
&

= min 1,
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= min 1,
p z \ i

*( ) p zi
* z \ i
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= min 1, 1( )           (cancel colors using z \ i
* = z \ i  , as only zi  changes)

= 1

(def’n of A())

Exploring the space

• Algorithms like Metropolis-Hastings exhibit “random walk 
behavior” if the step size (proposal variance) is small

• If the step size is too big, then you get rejected too often

• Adaptive methods exist (see slice sampling in Bishop)

• Another approach is to combine samplers with different 
properties

Combined samplers


