Annealing

Analogy with physical systems

Relevant for optimization (not integration)

Powers of probability distributions emphasize the peaks

If we are looking for a maximum within a lot of distracting
peaks, this can help.

Annealing

* Define a temperature T, and a cooling schedule (black magic
part)

* Lower temperatures correspond to emphasized maximal
peaks.

— Hence we exponentiate by (1/T).

Annealing

1. Initialise 2(©) and set Ty = 1.
2. Fori=0to N —1

Sample u ~ U 1.
Sample z* ~ g(z*|z?).
-+ .
Ifu < Az, 2%) = min{l, ML}
T (2 gz [2)
ill'(i+1) = x*

else
2+ = ()

Set T;4+1 according to a chosen cooling schedule.

(From Andrieu et al)
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Continuous versus discrete variables Hybrid Monte Carlo

* Derivatives of continuous distributions can tell you about the » References include Andrieu et al. 01 and Neal’93.
structure of your problem.

~ Opportunities for going much faster « Link the probability distribution to a potential energy function

» Naive approach is gradient ascent with added stochastic — Alternate stochastic sampling with “dynamics”.
properties — The dynamics follow the system to find low energy (high probability)

— Take a step, then perturb the result.
e HMC is an “auxiliary variable sampler”

» Typical approach is to link the probability distribution to a _ Tmportant trick

potential energy function

— To sample p(z) we sample p(z.r) or p(z o
— Follow the system to find low energy (high probability) ple p(z) ple p(z.1) or p(z.rit2....)

. . . — Ignore the auxiliary variables when we use the samples.
— Stochastic sampling via random momentum

— An effective example method is Hybrid Monte Carlo

1 eNtle

e Hamiltonian Dynamics

p(z)=—-exp(~E(2))

)2

We equate z with position, so E(z) is the potential energy.

High probability < Low energy

E(z)= —log(Zp)—log(p(z)).

-0,824070, 2,61599
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Hamiltonian Dynamics Hamiltonian Dynamics

Recall that the gradient, V, is the vector of partial derivatives. 1

p(z)= Z—exp(—E(z)) and VE(z)= V(—log(p(z)))
14

Recall from physics that force is the negative gradient of potential energy

Let r be the momentum vector for the system. Denote the

From before E(z)= —log(Zp)— log(p(z)) kinetic energy by K (r).

So force is ~-VE(z)= V(log(p(z))) K(r)= %Her = %er (We assume that mass is one).
Hamiltonian Dynamics Hamiltonian Dynamics

H(z,r)=E(z)+K(r) (conserved) H(z,xr)=E(z)+K(r) (conserved)

Our distribution with auxilary variables is We follow z according to H with a random r

1
p(zx)=—exp(~H (zr)) . : .
Z This can rapidly transport us towards a local minimun

(but not to stay indefinitely) thus avoiding random walk.

To follow H, we observe that z (position) changes proportional

to r (momentum), and r changes proportion to force (— VE).

Ar o< ~VE =V (log(p(2)))

AzZ <1




Following Dynamics Following Dynamics

In HMC we follow the dynamics for L time steps of size T For L leap frog steps we have.
(tunable parameters).

1. Take 1/2 stepinr.

In the "leap frog"method for each 7. 2. (L —1) times take a full steps in z, then r.

1. Take 1/2 step inr. 3. Take a full step in z.

2. Take a full step in z. 4.Take 1/2 stepinr
3.Take 1/2 stepinr.

Following Dynamics Following Dynamics

To take a full step in z. To take 1/2 step inr.

z(t+1)=z(1)+e-(r(1))

r(’[+%j:r(’c)+%8-(—VE(z))

(& is the step size).




Following Dynamics

» After L steps of size t, we are at a new point with some bias of
being at a lower potential energy (higher probability) and
higher momentum.

* Momentum allows us to jump out of wells.

HMC dynamics step acceptance

If our integration is perfect (i.e., in the limit as t --> 0) then
energy is conserved.

— Thus the value of distribution p(z,r) is the same after the dynamics.
If we assume no integration errors, we simply accept this step

If we want to account for error accumulation, we accept the
result according to:

minLl, p(z“,r*)] = min(1exp(H (z.r)— H (z".x")))

HMC stochastic step

* Typical instantiations sample the momentum variable

* Two common strategies
— Sample the r independently from a Gaussian
— Sample r from a Gaussian using Gibbs

» Note that in both of these cases the proposals are always
accepted.

Putting it all together
(A typical vision lab sampler)

Discrete variables are sampled using (reversible jump)
Metropolis Hastings.

Continuous variables are sampled using stochastic dynamics
(essentially hybrid Monte Carlo).

Discrete variables typically control topology or components
— The number of components and their type (block, cylinder)
— How components are connected (branches from a stem)




A typical vision lab sampler A typical vision lab sampler

Randomly proposing structure is too expensive because of the * We thus alternate between

high rejection rate. — (1) data driven proposals for new structure (or to switch or kill
existing structure)

. . . . — (2) exploring the continuous parameters of the structure
Solution (part one) is to use data driven sampling (2) exploring P

— Proposals are conditioned on distributions computed before we begin

using the data * Additional gains in optimization through having multiple
— For example, the probability of a corner being present in each point in samplers running in parallel exchange information
the image.

Solution (part two) is to delay acceptance

— Adjust continuous parameters using stochastic dynamics so that the
proposed structure is a good fit to the data.




