
Annealing 

• Analogy with physical systems

• Relevant for optimization (not integration)

• Powers of probability distributions emphasize the peaks

• If we are looking for a maximum within a lot of distracting 
peaks, this can help. 

Annealing 

• Define a temperature T, and a cooling schedule (black magic 
part)

• Lower temperatures correspond to emphasized maximal 
peaks.
– Hence we exponentiate by (1/T). 

Annealing 

(From Andrieu et al) (From Andrieu et al)



Continuous versus discrete variables

• Derivatives of continuous distributions can tell you about the 
structure of your problem.
– Opportunities for going much faster

• Naive approach is gradient ascent with added stochastic 
properties
– Take a step, then perturb the result.

• Typical approach is to link the probability distribution to a 
potential energy function
– Follow the system to find low energy (high probability)
– Stochastic sampling via random momentum
– An effective example method is Hybrid Monte Carlo

Hybrid Monte Carlo

• References include Andrieu et al. ’01 and Neal’93.

• Link the probability distribution to a potential energy function
– Alternate stochastic sampling with “dynamics”.
– The dynamics follow the system to find low energy (high probability)

• HMC is an “auxiliary variable sampler”
– Important trick
– To sample p(z) we sample p(z,r) or p(z,r1,r2,...)
– Ignore the auxiliary variables when we use the samples.

Hamiltonian Dynamics

p z( ) = 1
Zp

exp !E z( )( )

We equate z with position, so E z( )  is the potential energy.

High probability  "  Low energy

 E z( ) = ! log Zp( )! log p z( )( ).



Hamiltonian Dynamics

Recall that the gradient, !,  is the vector of partial derivatives.

Recall from physics that force is the negative gradient of potential energy

From before  E z( ) = " log Zp( )" log p z( )( )

So  force is  –!E z( ) = ! log p z( )( )( )

Hamiltonian Dynamics

p z( ) = 1
Zp

exp !E z( )( )      and    "E z( ) = " ! log p z( )( )( )

Let r be the momentum vector for the system. Denote the
kinetic energy by K r( ).

K r( ) = 1
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# (We assume that mass is one). 

Hamiltonian Dynamics

H z,r( ) = E z( ) + K r( )             (conserved)

Our distribution with auxilary variables is

p z,r( ) = 1
Z

exp !H z,r( )( )

Hamiltonian Dynamics

H z,r( ) = E z( ) + K r( )             (conserved)

We follow z according to H  with a random r

This can rapidly transport us towards a local minimun
(but not to stay indefinitely) thus avoiding random walk.

To follow H , we observe that z (position) changes proportional
to r (momentum), and r changes proportion to force (!"E). 

#r $!"E = " log p z( )( )( )
#z $ r



Following Dynamics 

In HMC we follow the dynamics for L time steps of size !
(tunable parameters). 

In the "leap frog"method for each ! .
    1. Take 1/2 step in r.
   2. Take a full step in z.

3. Take 1/2 step in r. 

Following Dynamics 

For L leap frog steps we have. 

    1. Take 1/2 step in r.
   2. L !1( )  times take a full steps in z, then r.

3. Take a full step in z. 
4. Take 1/2 step in r

Following Dynamics 

To take a full step in z.

z ! +1( ) = z !( ) + " # r !( )( )

("  is the step size).
    

Following Dynamics 

To take 1/2 step in r.

r ! + 1
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Following Dynamics 

• After L steps of size t, we are at a new point with some bias of 
being at a lower potential energy (higher probability) and 
higher momentum.

• Momentum allows us to jump out of wells.

HMC dynamics step acceptance 

• If our integration is perfect (i.e., in the limit as t --> 0) then 
energy is conserved.
– Thus the value of distribution p(z,r) is the same after the dynamics.

• If we assume no integration errors, we simply accept this step

• If we want to account for error accumulation, we accept the 
result according to:

min 1,
p z*,r*( )
p z,r( )
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& = min 1,exp H z,r( )' H z*,r*( )( )( )

HMC stochastic step 

• Typical instantiations sample the momentum variable

• Two common strategies
– Sample the r independently from a Gaussian
– Sample r from a Gaussian using Gibbs

• Note that in both of these cases the proposals are always 
accepted.

Putting it all together
(A typical vision lab sampler) 

• Discrete variables are sampled using (reversible jump) 
Metropolis Hastings.

• Continuous variables are sampled using stochastic dynamics 
(essentially hybrid Monte Carlo).

• Discrete variables typically control topology or components
– The number of components and their type (block, cylinder)
– How components are connected (branches from a stem)



A typical vision lab sampler

• Randomly proposing structure is too expensive because of the 
high rejection rate.

• Solution (part one) is to use data driven sampling
– Proposals are conditioned on distributions computed before we begin 

using the data
– For example, the probability of a corner being present in each point in 

the image.

• Solution (part two) is to delay acceptance 
– Adjust continuous parameters using stochastic dynamics so that the 

proposed structure is a good fit to the data. 

A typical vision lab sampler

• We thus alternate between
– (1) data driven proposals for new structure (or to switch or kill 

existing structure)
– (2) exploring the continuous parameters of the structure

• Additional gains in optimization through having multiple 
samplers running in parallel exchange information


