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Abstract. This purpose of this introductory paper is threefold. First, it introduces
the Monte Carlo method with emphasis on probabilistic machine learning. Second, it
reviews the main building blocks of modern Markov chain Monte Carlo simulation,
thereby providing and introduction to the remaining papers of this special issue.
Lastly, it discusses new interesting research horizons.
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1. Introduction

A recent survey places the Metropolis algorithm among the ten algo-
rithms that have had the greatest influence on the development and
practice of science and engineering in the 20th century (Beichl and
Sullivan 2000). This algorithm is an instance of a large class of sam-
pling algorithms, known as Markov chain Monte Carlo (MCMC). These
algorithms have played a significant role in statistics, econometrics,
physics and computing science over the last two decades. There are
several high-dimensional problems, such as computing the volume of a
convex body in d dimensions, for which MCMC simulation is the only
known general approach for providing a solution within a reasonable
time (polynomial in d) (Dyer, Frieze and Kannan 1991, Jerrum and
Sinclair 1996).
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2 Andrieu, de Freitas, Doucet & Jordan

While convalescing from an illness in 1946, Stan Ulam was play-
ing solitaire. It, then, occurred to him to try to compute the chances
that a particular solitaire laid out with 52 cards would come out suc-
cessfully (Eckhard 1987). After attempting exhaustive combinatorial
calculations, he decided to go for the more practical approach of laying
out several solitaires at random and then observing and counting the
number of successful plays. This idea of selecting a statistical sample to
approximate a hard combinatorial problem by a much simpler problem
is at the heart of modern Monte Carlo simulation.

Stan Ulam soon realised that computers could be used in this fashion
to answer questions of neutron diffusion and mathematical physics. He
contacted John Von Neumann, who understood the great potential of
this idea. Over the next few years, Ulam and Von Neumann developed
many Monte Carlo algorithms, including importance sampling and re-
jection sampling. Enrico Fermi in the 1930’s also used Monte Carlo
in the calculation of neutron diffusion, and later designed the FER-
MIAC, a Monte Carlo mechanical device that performed calculations
(Anderson 1986). In the 1940’s Nick Metropolis, a young physicist,
designed new controls for the state-of-the-art computer (ENIAC) with
Klari Von Neumann, John’s wife. He was fascinated with Monte Carlo
methods and this new computing device. Soon he designed an improved
computer, which he named the MANTAC in the hope that computer
scientists would stop using acronyms. During the time he spent work-
ing on the computing machines, many mathematicians and physicists
(Fermi, Von Neumann, Ulam, Teller, Richtmyer, Bethe, Feynman and
Gamow) would go to him with their work problems. Eventually in 1949,
he published the first public document on Monte Carlo simulation with
Stan Ulam (Metropolis and Ulam 1949). This paper introduces, among
other ideas, Monte Carlo particle methods, which form the basis of
modern sequential Monte Carlo methods such as bootstrap filters, con-
densation, and survival of the fittest algorithms (Doucet, de Freitas and
Gordon 2001). Soon after, he proposed the Metropolis algorithm with
the Tellers and the Rosenbluths (Metropolis, Rosenbluth, Rosenbluth,
Teller and Teller 1953).

Many papers on Monte Carlo simulation appeared in the physics
literature after 1953. From an inference perspective, the most signif-
icant contribution was the generalisation of the Metropolis algorithm
by Hastings in 1970. Hastings and his student Peskun showed that
Metropolis and the more general Metropolis-Hastings algorithms are
particular instances of a large family of algorithms, which also includes
the Boltzmann algorithm (Hastings 1970, Peskun 1973). They studied
the optimality of these algorithms and introduced the formulation of
the Metropolis-Hastings algorithm that we adopt in this paper. In the
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1980’s, two important MCMC papers appeared in the fields of computer
vision and artificial intelligence (Geman and Geman 1984, Pearl 1987).
Despite the existence of a few MCMC publications in the statistics
literature at this time, it is generally accepted that it was only in 1990
that MCMC made the first significant impact in statistics (Gelfand and
Smith 1990). In the neural networks literature, the publication of (Neal
1996) was particularly influential.

In the introduction to this special issue, we focus on describing
algorithms that we feel are the main building blocks in modern MCMC
programs. We should emphasize that in order to obtain the best results
out of this class of algorithms, it is important that we do not treat them
as black boxes, but instead try to incorporate as much domain specific
knowledge as possible into their design. MCMC algorithms typically
require the design of proposal mechanisms to generate candidate hy-
potheses. Many existing machine learning algorithms can be adapted to
become proposal mechanisms (de Freitas, Hpjen-Sgrensen, Jordan and
Russell 2001). This is often essential to obtain MCMC algorithms that
converge quickly. In addition to this, we believe that the machine learn-
ing community can contribute significantly to the solution of many open
problems in the MCMC field. For this purpose, we have outlined several
“hot” research directions at the end of this paper. Finally, readers are
encouraged to consult the excellent texts of (Chen, Shao and Ibrahim
2001, Gilks, Richardson and Spiegelhalter 1996, Liu 2001, Meyn and
Tweedie 1993, Robert and Casella 1999) and review papers by (Besag,
Green, Hidgon and Mengersen 1995, Brooks 1998, Diaconis and Saloff-
Coste 1998, Jerrum and Sinclair 1996, Neal 1993, Tierney 1994) for
more information on MCMC.

The remainder of this paper is organised as follows. In Part 2, we
outline the general problems and introduce simple Monte Carlo simu-
lation, rejection sampling and importance sampling. Part 3 deals with
the introduction of MCMC and the presentation of the most popular
MCMC algorithms. In part 4, we describe some important research
frontiers. To make the paper more accessible, we make no notational
distinction between distributions and densities until the section on
reversible jump MCMC.

2. MCMC Motivation

MCMC techniques are often applied to solve integration and opti-
misation problems in large dimensional spaces. These two types of
problem play a fundamental role in machine learning, physics, statis-
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tics, econometrics and decision analysis. The following are just some
examples.

1. Bayesian inference and learning: Given some unknown vari-
ables £ € X and data y € Y, the following typically intractable
integration problems are central to Bayesian statistics

a) Normalisation: To obtain the posterior p(z|y) given the prior
p(z) and likelihood p(y|z), the normalising factor in Bayes’
theorem needs to be computed

o) P)(z)
M) = e ptylen ot

b) Marginalisation: Given the joint posterior of (r,z) € X x Z,
we may often be interested in the marginal posterior

p(aly) = /Z p(z, 2ly)dz.

c) Ezpectation: The objective of the analysis is often to obtain
summary statistics of the form

Eyaiy (/(2)) = [ S(a)p(aly)da

for some function of interest f : X — R"™f integrable with re-

spect to p (z|y). Examples of appropriate functions include the

conditional mean, in which case f (z) = z, or the conditional
: — !/ !

covariance of z where f (z) = zz' — Ey,) (w)IEpmy) (z).

2. Statistical mechanics: Here, one needs to compute the partition
function Z of a system with states s and Hamiltonian E(s)

Z = gexp [—]‘Z(;)] ,

where k is the Boltzmann’s constant and 7' denotes the temperature
of the system. Summing over the large number of possible config-
urations is prohibitively expensive (Baxter 1982). Note that the
problems of computing the partition function and the normalising
constant in statistical inference are analogous.

3. Optimisation: The goal of optimisation is to extract the solution
that minimises some objective function from a large set of feasible
solutions. In fact, this set can be continuous and unbounded. In
general, it is too computationally expensive to compare all the
solutions to find out which one is optimal.
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4. Penalised likelihood model selection: This task typically in-
volves two steps. First, one finds the maximum likelihood (ML)
estimates for each model separately. Then one uses a penalisation
term (for example MDL, BIC or AIC) to select one of the models.
The problem with this approach is that the initial set of models can
be very large. Moreover, many of those models are of not interest
and, therefore, computing resources are wasted.

Although we have emphasized integration and optimisation, MCMC
also plays a fundamental role in the simulation of physical systems. This
is of great relevance in nuclear physics and computer graphics (Chenney
and Forsyth 2000, Kalos and Whitlock 1986, Veach and Guibas 1997).

2.1. THE MONTE CARLO PRINCIPLE

The idea of Monte Carlo simulation is to draw an i.i.d. set of samples
{zMN | from a target density p(z) defined on a high-dimensional space
X (e.g. the set of possible configurations of a system, the space on which
the posterior is defined, or the combinatorial set of feasible solutions).
These N samples can be used to approximate the target density with
the following empirical point-mass function

1 N
pN (z) = N > 6,0 (z),
i=1

where 0, (z) denotes the delta-Dirac mass located at z("). Conse-
quently, one can approximate the integrals (or very large sums) I (f)
with tractable sums Iy (f) that converge as follows

N—oo

1,
In(f) =52 fe) > I(f):/Xf(x)p(m)dm.
i=1

That is, the estimate Iy (f) is unbiased and by the strong law of large

numbers, it will almost surely (a.s.) converge to I (f). If the variance (in

the univariate case for simplicity) of f () satisfies 0% £ By, (f?(2)) —

I?(f) < oo, then the variance of the estimator Iy (f) is equal to
2

var (In (f)) = %,ﬁ and a central limit theorem yields convergence in
distribution of the error

VN (In (1) - 1(D)) = N0.5))

where = denotes convergence in distribution (Robert and Casella
1999, Section 3.2). The advantage of Monte Carlo integration over
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deterministic integration arises from the fact that the former positions
the integration grid (samples) in regions of high probability. The N
samples can also be used to obtain a maximum of the objective function
p(z) as follows
Z= argmax p (m(i))
z(=1,....N

However, we will show later that it is possible to construct simulated
annealing algorithms that allow us to sample approximately from a
distribution whose support is the set of global maxima.

When p(z) has standard form, e.g. Gaussian, it is straightforward
to sample from it using easily available routines. However, when this is
not the case, we need to introduce more sophisticated techniques based
on rejection sampling, importance sampling and MCMC.

2.2. REJECTION SAMPLING

We can sample from a distribution p(z), which is known up to a propor-
tionality constant, by sampling from another easy-to-sample proposal
distribution ¢(z) that satisfies p(z) < Mgq(z), M < oo, using the
accept /reject procedure describe in Figure 1 (see also Figure 2). The

Seti=1
Repeat until i = N

1. Sample x(i)Nq (z) and u ~ U(O,l)-

p(a?)
Mq(z(®)
1. Otherwise, reject.

2. Ifu <

then accept (¥ and increment the counter i by

Figure 1. Rejection sampling algorithm. Here, u ~ U(o,1) denotes the operation of
sampling a uniform random variable on the interval (0,1).

accepted () can be easily shown to be sampled with probability p (z)
(Robert and Casella 1999, page 49). This simple method suffers from
severe limitations. It is not always possible to bound p (z) /q (z) with a
reasonable constant M over the whole space X. If M is too large, the
acceptance probability

Pr (z accepted) = Pr (u <

p(z) ) 1

Mg (x) M
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will be too small. This makes the method impractical in high-dimensional
scenarios.

A

-

o
X~ g(x) X

Figure 2. Rejection sampling: sample a candidate 2% and a uniform variable w.
Accept the candidate sample if uMq(z®) < p(z?), otherwise reject it.

2.3. IMPORTANCE SAMPLING

Importance sampling is an alternative “classical” solution that goes
back to the 1940’s; see for example (Geweke 1989, Rubinstein 1981).
Let us introduce, again, an arbitrary importance proposal distribution
g(x) such that its support includes the support of p(z). Then we can
rewrite I(f) as follows

1(f) = [ £ @)w(s)q(@)ds

where w (z) £ % is known as the importance weight. Consequently,
if one can simulate N i.i.d. samples {z¥}¥, according to ¢ (x) and

evaluate w(z(®), a possible Monte Carlo estimate of T (f) is

In(f) = fjf (+©) w(=®)

This estimator is unbiased and, under weak assumptions, the strong
law of large numbers applies, that is Iy (f) Nﬂ I(f). It is clear that
— 00

this integration method can also be interpreted as a sampling method
where the posterior density p (x) is approximated by

N

B (2) = Y w(@)dy0 (z)
i=1
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and Iy (f) is nothing but the function f (z) integrated with respect to
the empirical measure py ().

Some proposal distributions ¢(z) will obviously be preferable to
others. An important criterion for choosing an optimal proposal dis-
tribution is to find one that minimises the variance of the estimator
Iy (f). The variance of f(z)w(x) with respect to g(z) is given by

vary(o) (f (2w (@) = By (f2(2)w?(2)) = I2(f) (8)

The second term on the right hand side does not depend on ¢(z) and
hence we only need to minimise the first term, which according to
Jensen’s inequality has the following lower bound

By (P @) 2 (Byo (5@l = ([ @ip@ar)

This lower bound is attained when we adopt the following optimal
importance distribution

@)
T = T f)lple)da

The optimal proposal is not very useful in the sense that it is not
easy to sample from |f(z)|p(z). However, it tells us that high sampling
efficiency is achieved when we focus on sampling from p(z) in the
important regions where |f(z)|p(z) is relatively large; hence the name
importance sampling.

This result implies that importance sampling estimates can be super-
efficient. That is, for a a given function f(z), it is possible to find a
distribution ¢(x) that yields an estimate with a lower variance than
when using a perfect Monte Carlo method, i.e. with g(z) = p(z). This
property is often exploited to evaluate the probability of rare events
in communication networks (Smith, Shafi and Gao 1997). There the
quantity of interest is a tail probability (bit error rate) and hence
f(z) = 1g(z) where Ig(z) = 1if z € E and 0 otherwise (see Figure 3).
One could estimate the bit error rate more efficiently by sampling
according to ¢(z) « Ig(z)p(z) than according to g(z) = p(z). That
is, it is wasteful to propose candidates in regions of no utility. In many
applications, the aim is usually different in the sense that one wants
to have a good approximation of p(z) and not of a particular integral
with respect to p(z), so we often seek to have ¢(z) ~ p(z).

As the dimension of the z increases, it becomes harder to obtain
a suitable g(z) from which to draw samples. A sensible strategy is
to adopt a parameterised ¢(z,6) and to adapt € during the simula-
tion. Adaptive importance sampling appears to have originated in the
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Figure 8. Importance sampling: one should place more importance on sampling from
the state space regions that matter. In this particular example one is interested in
computing a tail probability of error (detecting infrequent abnormalities).

structural safety literature (Bucher 1988), and has been extensively
applied in the communications literature (Al-Qaq, Devetsikiotis and
Townsend 1995, Remondo, Srinivasan, Nicola, van Etten and Tattje
2000). This technique has also been exploited recently in the machine
learning community (de Freitas, Niranjan, Gee and Doucet 2000, Cheng
and Druzdzel 2000, Ortiz and Kaelbling 2000, Schuurmans and Southey
2000). A popular adaptive strategy involves computing the derivative
of the first term on the right hand side of equation (1)

DO) = By Pyt 0 2200

and then updating the parameters as follows

ow(z®, 6;)

1, ,
9t—|—1 :et_aﬁz.f ('T(Z))w(x(l)’et) 89t

=1

where « is a learning rate and z() ~ q(z,0). Other optimisation
approaches that make use of the Hessian are also possible.
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When the normalising constant of p(x) is unknown, it is still possible
to apply the importance sampling method by rewriting I(f) as follows:

1y = LI @w @)@ do
Jw(z)q(z)dz
where w (z) f}% is now only known up to a normalising constant.
The Monte Carlo estimate of I (f) becomes
1 —N ; ]
3 TN (29) w(z®) N o
N 7
In(f) = — = =" f (29) w(=®)
e ! @)

where @ (z(®) is a normalised importance weight. For N finite, Iy (f) is

biased (ratio of two estimates) but asymptotically, under weak assump-

tions, the strong law of large numbers applies, that is Iy (f) Nﬂ) I(f).
— 00

Under additional assumptions a central limit theorem can be obtained
(Geweke 1989). The estimator Iy (f) has been shown to perform better
than Ty (f) in some setups under squared error loss (Robert and Casella
1999).

If one is interested in obtaining M i.i.d. samples from px (z), then
an asymptotically (N/M — oo) valid method consists of resampling
M times according to the discrete distribution py (z). This procedure
results in M samples () with the possibility that (") = zU) for i # j.
This method is known as sampling importance resampling (SIR) (Rubin
1988). After resampling, the approximation of the target density is

1 M
P (2) = 22 - 050 (@) (13)
=1

The resampling scheme introduces some additional Monte Carlo vari-
ation. It is, therefore, not clear whether the SIR procedure can lead to
practical gains in general. However, in the sequential Monte Carlo set-
ting described in Section 4.3, it is essential to carry out this resampling
step.

We conclude this section by stating that even with adaptation, it is
often impossible to obtain proposal distributions that are easy to sam-
ple from and good approximations at the same time. For this reason,
we need to introduce more sophisticated sampling algorithms based on
Markov chains.
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3. MCMC Algorithms

MCMC is a strategy for generating samples z(9) while exploring the
state space X using a Markov chain mechanism. This mechanism is
constructed so that the chain spends more time in the most important
regions. In particular, it is constructed so that the samples % mimic
samples drawn from the target distribution p(z). (We reiterate that we
use MCMC when we cannot draw samples from p(z) directly, but can
evaluate p(z) up to a normalising constant.)

It is intuitive to introduce Markov chains on finite state spaces,
where () can only take s discrete values z(9) € X = {z1,22,...,25}.
The stochastic process z(® is called a Markov chain if

p(.T(z)‘.T(z_l), ve ,Jj(l)) = T(x(l)|$(z—1))’

The chain is homogeneous if T £ T(z®)|z(~1) remains invariant for
all i, with 3 ) T'(z®|z(~Y) = 1 for any 4. That is, the evolution of
the chain in a space X depends solely on the current state of the chain
and a fixed transition matrix.

Figure 4. Transition graph for the Markov chain example with X = {z1,z2,z3}.

As an example, consider a Markov chain with three states (s = 3)
and a transition graph as illustrated in Figure 4. The transition matrix

for this example is
0 1 0
T=1| 0 0109

06 04 0

If the probability vector for the initial state is u(z(")) = (0.5,0.2,0.3),
it follows that p(zM)T = (0.2,0.6,0.2) and, after several iterations
(multiplications by T, the product u(z(M)T* converges to p(z) =
(0.2,0.4,0.4). No matter what initial distribution x(z(!)) we use, the
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chain will stabilise at p(z) = (0.2,0.4,0.4). This stability result plays
a fundamental role in MCMC simulation. For any starting point, the
chain will convergence to the invariant distribution p(z), as long as T'
is a stochastic transition matrix that obeys the following properties:

1. Irreducibility: For any state of the Markov chain, there is a positive
probability of visiting all other states. That is, the matrix T cannot
be reduced to separate smaller matrices, which is also the same as
stating that the transition graph is connected.

2. Aperiodicity: The chain should not get trapped in cycles.

A sufficient, but not necessary, condition to ensure that a particular
p(z) is the desired invariant distribution is the following reversibility
(detailed balance) condition

Pla)T (0D ]2) = p(al-D)T(aD]2D).
Summing both sides over (1), gives us

pa?) = 3 plal )T EO ),

z(i—1)

MCMC samplers are irreducible and aperiodic Markov chains that have
the target distribution as the invariant distribution. One way to design
these samplers is to ensure that detailed balance is satisfied. However,
it is also important to design samplers that converge quickly. Indeed,
most of our efforts will be devoted to increasing the convergence speed.

Spectral theory gives us useful insights into the problem. Notice that
p(z) is the left eigenvector of the matrix 7" with corresponding eigen-
value 1. In fact, the Perron-Frobenius theorem from linear algebra tells
us that the remaining eigenvalues have absolute value less than 1. The
second largest eigenvalue, therefore, determines the rate of convergence
of the chain, and should be as small as possible.

The concepts of irreducibility, aperiodicity and invariance can be
better appreciated once we realise the important role that they play in
our lives. When we search for information on the World-Wide Web,
we typically follow a set of links (Berners-Lee, Cailliau, Luotonen,
Nielsen and Secret 1994). We can interpret the webpages and links,
respectively, as the nodes and directed connections in a Markov chain
transition graph. Clearly, we (say, the random walkers on the Web)
want to avoid getting trapped in cycles (aperiodicity) and want to be
able to access all the existing webpages (irreducibility). Let us consider,
now, the popular information retrieval algorithm used by the search
engine Google, namely PageRank (Page, Brin, Motwani and Winograd
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1998). PageRank requires the definition of a transition matrix with
two components T' = L + E. L is a large link matrix with rows and
columns corresponding to web pages, such that the entry L; ; represents
the normalised number of links from web page ¢ to web page j. E is
a uniform random matrix of small magnitude that is added to L to
ensure irreducibility and aperiodicity. That is, the addition of noise
prevents us from getting trapped in loops, as it ensures that there is
always some probability of jumping to anywhere on the Web. From our
previous discussion, we have

p(a" ) [L + E] = p(a”)

where, in this case, the invariant distribution (eigenvector) p(z) rep-
resents the rank of a webpage x. Note that it is possible to design
more interesting transition matrices in this setting. As long as one
satisfies irreducibility and aperiodicity, one can incorporate terms into
the transition matrix that favour particular webpages or that bias the
search in useful ways.

In continuous state spaces, the transition matrix T' becomes an
integral kernel K and p(z) becomes the corresponding eigenfunction

/p(x(i))K(w(i—H)|w(i))dw(i) _ p(x(i—kl))'

The kernel K is the conditional density of z(*t1) given the value z(®). It
is a mathematical representation of a Markov chain algorithm. In the
following subsections we describe various of these algorithms.

3.1. THE METROPOLIS-HASTINGS ALGORITHM

The Metropolis-Hastings (MH) algorithm is the most popular MCMC
method (Hastings 1970, Metropolis et al. 1953). In later sections, we
will see that most practical MCMC algorithms can be interpreted as
special cases or extensions of this algorithm.

An MH step of invariant distribution p (z) and proposal distribution
q (z*| z) involves sampling a candidate value z* given the current value
z according to g (z*| z). The Markov chain then moves towards z* with
acceptance probability A(z, z*) = min{1, [p(z)q(z*|2)] ! p(2*)q(x|2z*)},
otherwise it remains at z. The pseudo-code is shown in Figure 5, while
Figure 6 shows the results of running the MH algorithm with a Gaussian
proposal distribution ¢(z*|z())) = N(2(¥,100) and a bimodal target
distribution p(z) o 0.3 exp (—0.22%) + 0.7 exp (—0.2(z — 10)?) for 5000
iterations. As expected, the histogram of the samples approximates the
target distribution.
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14 Andrieu, de Freitas, Doucet & Jordan

1. Initialise z(®.
2. Fori=0to N -1
— Sample u ~ Ujg 13-
— Sample z* ~ g(z*|z(®).

. ) oy (i)
- < A0, =minf 1, e

m(i—i—l) = r*

else
2(i+1) — ()

Figure 5. Metropolis-Hastings algorithm.

0.15 0.15
0.1 i=100 0.1 ‘ \ i=500
| *
Al
0.15 0.15 i
| i\
0.1 l i=1000 0.1 A i=5000

Figure 6. Target distribution and histogram of the MCMC samples at different
iteration points.

The MH algorithm is very simple, but it requires careful design of
the proposal distribution g(z*|z). In subsequent sections, we will see
that many MCMC algorithms arise by considering specific choices of
this distribution. In general, it is possible to use suboptimal inference
and learning algorithms to generate data-driven proposal distributions.
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An Introduction to MCMC for Machine Learning 15

The transition kernel for the MH algorithm is
Ky (@ ]29) = g2 o) A, 2D) 4,60 (D)1 (0),

where 7(z(%)) is the term associated with rejection

r(z®) = /){q(m*|x(i)) (1 — A(x(i),m*)) dz*.

It is fairly easy to prove that the samples generated by MH algorithm
will mimic samples drawn from the target distribution asymptotically.
By construction, K,y satisfies the detailed balance condition

p(x(z))KMH(.’E(Z+1)|.’E(Z)) _ p(iE(Z+1))KMH(£E(Z)|.’13(Z+1))

and, consequently, the MH algorithm admits p(x) as invariant distribu-
tion. To show that the MH algorithm converges, we need to ensure that
there are no cycles (aperiodicity) and that every state that has positive
probability can be reached in a finite number of steps (irreducibility).
Since the algorithm always allows for rejection, it follows that it is
aperiodic. To ensure irreducibility, we simply need to make sure that the
support of g(-) includes the support of p(-). Under these conditions, we
obtain asymptotic convergence (Tierney 1994, Theorem 3, page 1717).
If the space X is small (for example, bounded in R™), then it is possible
to use minorisation conditions to prove uniform (geometric) ergodicity
(Meyn and Tweedie 1993). It is also possible to prove geometric er-
godicity using Foster-Lyapunov drift conditions (Meyn and Tweedie
1993, Roberts and Tweedie 1996).

The independent sampler and the Metropolis algorithm are two sim-
ple instances of the MH algorithm. In the independent sampler the
proposal is independent of the current state, g(z*|z(®) = g(z*). Hence,
the acceptance probability is

A(z®, 2*) = min{l %} min{l, %}

This algorithm is close to importance sampling, but now the samples
are correlated since they result from comparing one sample to the other.
The Metropolis algorithm assumes a symmetric random walk proposal
q(w*|m(i)) = q(:c(i)\:c*) and, hence, the acceptance ratio simplifies to

A(z®, 2*) = min{l, ]i(xw(j))) }

Some properties of the MH algorithm are worth highlighting. Firstly,
the normalising constant of the target distribution is not required.
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16 Andrieu, de Freitas, Doucet & Jordan

o=1 0'=100

0'=10

MCMC approximation

Target distribution

Figure 7. Approximations obtained using the MH algorithm with three Gaussian
proposal distributions of different variances.

We only need to know the target distribution up to a constant of
proportionality. Secondly, although the pseudo-code makes use of a
single chain, it is easy to simulate several independent chains in parallel.
Lastly, the success or failure of the algorithm often hinges on the choice
of proposal distribution. This is illustrated in Figure 7. Different choices
of the proposal standard deviation o* lead to very different results. If
the proposal is too narrow, only one mode of p(z) might be visited.
On the other hand, if it is too wide, the rejection rate can be very
high, resulting in high correlations. If all the modes are visited while
the acceptance probability is high, the chain is said to “mix” well.

3.2. SIMULATED ANNEALING FOR GLOBAL OPTIMIZATION

Let us assume that instead of wanting to approximate p(z), we want
to find its global maximum. For example, if p(z) is the likelihood or
posterior distribution, we often want to compute the ML and maximum
a posteriori (MAP) estimates. As mentioned earlier, we could run a
Markov chain of invariant distribution p(z) and estimate the global
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mode by
= argmax p (a:(i)) .
z(®i=1,...,.N

This method is inefficient because the random samples only rarely
come from the vicinity of the mode. Unless the distribution has large
probability mass around the mode, computing resources will be wasted
exploring areas of no interest. A more principled strategy is to adopt
simulated annealing (Geman and Geman 1984, Kirkpatrick, Gelatt
and Vecchi 1983, Van Laarhoven and Arts 1987). This technique in-
volves simulating a non-homogeneous Markov chain whose invariant
distribution at iteration 7 is no longer equal to p(x), but to

pi(z) o p!/T (),

where T; is a decreasing cooling schedule with lim; ., 7; = 0. The
reason for doing this is that, under weak regularity assumptions on
p(z), p>°(z) is a probability density that concentrates itself on the set
of global maxima of p(z). The simulated annealing involves, therefore,
just a minor modification of standard MCMC algorithms as shown
in Figure 8. The results of applying annealing to the example of the
previous section are shown in Figure 9.

1. Initialise 2(® and set Ty = 1.
2. Fori=0to N -1
— Sample u ~ Ujg 1)

—  Sample z* ~ g(z*|z®).

— Ifu< A@®,2*) = min{l, Fiatavellig }
pTi (2)q(z* [z(1)
m(i+1) — p*
else
201 = 4@

— Set T;4+1 according to a chosen cooling schedule.

Figure 8. General simulated annealing algorithm.

To obtain efficient annealed algorithms, it is again important to
choose suitable proposal distributions and an appropriate cooling sched-
ule. Many of the negative simulated annealing results reported in the
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0.2 0.2

0.2 0.2
0.1 i=1000 0.1 i=5000
0 0
-10 0 10 20 -10 0 10 20

Figure 9. Discovering the modes of the target distribution with the simulated
annealing algorithm.

literature often stem from poor proposal distribution design. In some
complex variable and model selection scenarios arising in machine learn-
ing, one can even propose from complex reversible jump MCMC kernels
(Section 3.7) within the annealing algorithm (Andrieu, de Freitas and
Doucet 2000a). If one defines a joint distribution over the parameter
and model spaces, this technique can be used to search for the best
model (according to MDL or AIC criteria) and ML parameter estimates
simultaneously.

Most convergence results for simulated annealing typically state that
if for a given T;, the homogeneous Markov transition kernel mixes
quickly enough, then convergence to the set of global maxima of p(z)
is ensured for a sequence T; = (C'In(i 4+ Ty)) ', where C' and Ty are
problem-dependent. Most of the results have been obtained for finite
spaces (Geman and Geman 1984, Van Laarhoven and Arts 1987) or
compact continuous spaces (Haario and Sacksman 1991). Some results
for non-compact spaces can be found in (Andrieu, Breyer and Doucet
1999).

3.3. MiXTURES AND CYCLES OF MCMC KERNELS
A very powerful property of MCMC is that it is possible to combine

several samplers into mixtures and cycles of the individual samplers
(Tierney 1994). If the transition kernels K; and K3 have invariant dis-
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tribution p(-) each, then the cycle hybrid kernel Ki K and the mizture
hybrid kernel vK;+(1—v) Ky, for 0 < v < 1, are also transition kernels
with invariant distribution p(-).

Mixtures of kernels can incorporate global proposals to explore vast
regions of the state space and local proposals to discover finer details of
the target distribution (Andrieu, de Freitas and Doucet 2000b, Andrieu
and Doucet 1999, Robert and Casella 1999). This will be useful, for
example, when the target distribution has many narrow peaks. Here, a
global proposal locks into the peaks while a local proposal allows one
to explore the space around each peak. For example, if we require a
high-precision frequency detector, one can use the fast Fourier trans-
form (FFT) as a global proposal and a random walk as local proposal
(Andrieu and Doucet 1999). Similarly, in kernel regression and classifi-
cation, one might want to have a global proposal that places the bases
(kernels) at the locations of the input data and a local random walk
proposal that perturbs these in order to obtain better fits (Andrieu
et al. 2000b). However, mixtures of kernels also play a big role in
many other samplers, including the reversible jump MCMC algorithm
(Section 3.7). The pseudo-code for a typical mixture of kernels is shown
in Figure 10.

1. Initialise ().
2. Fori=0to N -1
— Sample u ~ Ujg 13-
— fu<v
Apply the MH algorithm with a global proposal.
— else

Apply the MH algorithm with a random walk proposal.

Figure 10. Typical Mixture of MCMC kernels.

Cycles allow us to split a multivariate state vector into components
(blocks) that can be updated separately. Typically the samplers will
mix more quickly by blocking highly correlated variables. A block
MCMC sampler, using b; to indicate the j-th block, n, to denote the
G 2 ety ey ) )y,
is shown in Figure 11. The transition kernel for this algorithm is given

number of blocks and z
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by the following expression
1 1
KMH—Cycle( @ +1 H KMH(J) H— )| (_z?,',J]))

where Ky denotes the j-th MH algorithm in the cycle.

1. Initialise z(®).
2. Fori=0to N -1

(Hl) according to an MH step with pro-

’H) |m(’4,;1]),a:,(,1)) and invariant distribution

— Sample the block z;

posal distribution ¢; (z;

play D).

(i+1)

— Sample the block z; according to an MH step with pro-

H—l) |.’L'(Z+1) (7)

posal distribution ga (x, (b5] > Tbs ) and invariant distribution

pag V).

— Sample the block a:,(,’tl) according to an MH step with proposal

z+1) |.’L'(Z+1) (7)

distribution gy, (z, 1T, ) and invariant distribution

1 1
plap VD).

Figure 11. Cycle of MCMC kernels - block MH algorithm.

Obviously, choosing the size of the blocks poses some trade-offs.
If one samples the components of a multi-dimensional vector one-at-
a-time, the chain may take a very long time to explore the target
distribution. This problem gets worse as the correlation between the
components increases. Alternatively, if one samples all the components
together, then the probability of accepting this large move tends to be
very low.

A popular cycle of MH kernels, known as Gibbs sampling (Geman
and Geman 1984), is obtained when we adopt the full conditional
distributions p(z;|z—;) = p(zj|z1,...,2j-1,Zj+1,...,%n) as proposal
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distributions (for notational simplicity, we have replaced the index
notation b; with j). The following section describes it in more detail.

3.4. THE GIBBS SAMPLER

Suppose we have an n-dimensional vector x and the expressions for the
full conditionals p(z;|z1,...,2j—1,Zj+1,...,Ty). In this case, it is often
advantageous to use the following proposal distribution for j = 1,...,n

a0y = [Pl T =a
0 Otherwise.
The corresponding acceptance probability is:

i) x [ plat)g=P]a*)
A(I()’x) = mln{l (1,)) ( *‘:[; ))}

- mln{l (w(z)'; }

That is, the acceptance probability for each proposal is one and, hence,
the deterministic scan Gibbs sampler algorithm is often presented as
shown in Figure 12.

Since the Gibbs sampler can be viewed as a special case of the MH
algorithm, it is possible to introduce MH steps into the Gibbs sampler.
That is, when the full conditionals are available and belong to the family
of standard distributions (Gamma, Gaussian, etc.), we will draw the
new samples directly. Otherwise, we can draw samples with MH steps
embedded within the Gibbs algorithm. For n = 2, the Gibbs sampler
is also known as the data augmentation algorithm, which is closely
related to the expectation maximisation (EM) algorithm (Dempster,
Laird and Rubin 1977, Tanner and Wong 1987).

Directed acyclic graphs (DAGS) are one of the best known applica-
tion areas for Gibbs sampling (Pearl 1987). Here, a large-dimensional
joint distribution is factored into a directed graph that encodes the
conditional independencies in the model. In particular, if ,,(;) denotes
the parent nodes of node z;, we have

T) = Hp(xJ"xpa(j))'
J
It follows that the full conditionals simplify as follows

p(33j|$7j) x]‘m'pa(] H p -’1:lc|‘77pa
kech(j)
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1. Initialise 2g,1:p.
2. Fori=0to N -1
— Sample mgiﬂ) ~ p(m1|mgi),:cgi), e ,mg)).

(41 40 0)

Sample a:giﬂ) ~ p(z2|z

gi+1) ZU(i_H) ;L'(i) (i)).

(i+1)
Sample z; ~ p(zjlx S PRI ST 7

— Sample 2 ~ p(anlaf ™, 2§, alHD).

Figure 12. Gibbs Sampler.

where ch(j) denotes the children nodes of x;. That is, we only need
to take into account the parents, the children and the children’s par-
ents. This set of variables is known as the Markov blanket of x;. This
technique forms the basis of the popular software package for Bayesian
updating with Gibbs sampling (BUGS) (Gilks, Thomas and Spiegelhal-
ter 1994). Sampling from the full conditionals, with the Gibbs sampler,
lends itself naturally to the construction of general purpose MCMC
software. It is sometimes convenient to block some of the variables to
improve mixing (Jensen, Kong and Kjeerulff 1995, Wilkinson and Yeung
2001).

3.5. MoNTE CARLO EM

The EM algorithm (Baum, Petrie, Soules and Weiss 1970, Dempster et
al. 1977) is a standard algorithm for ML and MAP point estimation.
If X contains visible and hidden variables z = {z,,zp}, then a local
maximum of the likelihood p(z,|#) given the parameters € can be found
by iterating the following two steps:

1. E step: Compute the expected value of the complete log-likelihood
function with respect to the distribution of the hidden variables

Qo) = /X log (p(zh, ©0|0)) p(zh|T0, 0°'Y)dzp,
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where 019 refers to the value of the parameters at the previous
time step.

2. M step: Perform the following maximisation ) = arg max Q(#).
0

In many practical situations, the expectation in the E step is either a
sum with an exponentially large number of summands or an intractable
integral (Ghahramani 1995, Ghahramani and Jordan 1995, McCulloch
1994, Pasula, Russell, Ostland and Ritov 1999, Utsugi 2001); see also
(Dellaert, Seitz, Thorpe and Thrun 2001: this issue). A solution is
to introduce MCMC to sample from p(:vh|a:v,0(°‘d)) and replace the
expectation in the E step with a small sum over the samples, as shown
in Figure 13. Convergence of this algorithm is discussed in (Sherman,
Ho and Dalal 1999), while (Levine and Casella 2001) is a good recent
review.

1. Initialise (z\”),6(©)) and set i = 0.
2. lteration 7 of EM

— Sample {mh)} *, with any suitable MCMC algorithm. For exam-
ple, one could use an MH algorithm with acceptance probability

(@], 0G=1)p(a 96D g(at|2()

— E step: Compute

1
- F Zlogp mh 7mv|0)

— M step: Maximise 6() = argmax Q(6).
0

3.9+ i+ 1 and go to 2.

Figure 13. MCMC-EM algorithm.

To improve the convergence behaviour of EM, namely to escape low
local minima and saddle points, various authors have proposed stochas-
tic approaches that rely on sampling from p(z,|z,, 0©9) in the E step
and then performing the M step using these samples. The method is
known as stochastic EM (SEM) when we draw only one sample (Celeux
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and Diebolt 1985) and Monte Carlo EM (MCEM) when several samples
are drawn (Wei and Tanner 1990). There are several annealed variants
(such as SAEM) that become more deterministic as the number of iter-
ations increases (Celeux and Diebolt 1992). The are also very efficient
algorithms for marginal MAP estimation (SAME) (Doucet, Godsill and
Robert 2000). One wishes sometimes that Metropolis had succeeded in
stopping the proliferation of acronyms!

3.6. AUXILIARY VARIABLE SAMPLERS

It is often easier to sample from an augmented distribution p(z,u),
where v is an auxiliary variable, than from p(z). Then, it is possible
to obtain marginal samples z(Y) by sampling (m(i),u(i)) according to
p(z,u) and, subsequently, ignoring the samples u(Y). This very useful
idea was proposed in the physics literature (Swendsen and Wang 1987).
Here, we will focus on two well-known examples of auxiliary variable
methods, namely hybrid Monte Carlo and slice sampling.

3.6.1. Hybrid Monte Carlo

Hybrid Monte Carlo (HMC) is an MCMC algorithm that incorporates
information about the gradient of the target distribution to improve
mixing in high dimensions. We describe here the “leapfrog” HMC algo-
rithm outlined in (Duane, Kennedy, Pendleton and Roweth 1987, Neal
1996) focusing on the algorithmic details and not on the statistical me-
chanics motivation. Assume that p(x) is differentiable and everywhere
strictly positive. At each iteration of the HMC algorithm, one takes
a predetermined number (L) of deterministic steps using information
about the gradient of p(z). To explain this in more detail, we first need
to introduce a set of auxiliary “momentum” variables u € R" and
define the extended target density

p(z; u) = p(@)N (40, I,

Next, we need to introduce the n,-dimensional gradient vector A(z) £
0logp(z)/0z and a fixed step-size parameter p > 0.

In the HMC algorithm, we draw a new sample according to p(z, u) by
starting with the previous value of z and generating a Gaussian random
variable u. We then take L “frog leaps” in u and z. The values of u
and z at the last leap are the proposal candidates in the MH algorithm
with target density p(z,u). Marginal samples from p(z) are obtained
by simply ignoring u. Given (z(~1), 4(~1), the algorithm proceeds as
illustrated in Figure 14.

When only one deterministic step is used, i.e. L = 1, one obtains
the Langevin algorithm, which is a discrete time approximation of a
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1. Initialise (®).

2. Fori=0to N -1
— Sample v ~ Upp,1) and u* ~ N(0, I,,).
— Let zg = 2 and up = u* + pA(z0)/2.
— Forl=1,...,L, take steps

Ty = Ty—1 + pui—1
uw = ui—1 + prA(zy)
where p; = p for | < L and pr = p/2.
— Ifv<A=min {1, ;’((;(f.))) exp (—3(ujur — u*Tu*))}
(x(i+1)’u(i+1)) = (;L'L’UL)

else

(2, uli D) = (o0, %)

Figure 14. Hybrid Monte Carlo.

Langevin diffusion process. The Langevin algorithm is a special case of
MH where the candidate satisfies

o* = g + pug = 207D + p(u* + pA(z7Y)/2)

with v* ~ N (0, I, ).

The choice of the parameters L and p poses simulation tradeoffs.
Large values of p result in low acceptance rates, while small values
require many leapfrog steps (expensive computations of the gradient) to
move between two nearby states. Choosing L is equally problematic as
we want it to be large to generate candidates far from the initial state,
but this can result in many expensive computations. HMC, therefore,
requires careful tuning of the proposal distribution. It is more efficient,
in practice, to allow a different step size p for each of the coordinates
of z (Ishwaran 1999).

3.6.2. The Slice Sampler

The slice sampler (Damien, Wakefield and Walker 1999, Higdon 1998,
Wakefield, Gelfand and Smith 1991) is a general version of the Gibbs
sampler. The basic idea of the slice sampler is to introduce an auxiliary
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26 Andrieu, de Freitas, Doucet & Jordan

variable u € R and construct an extended target distribution p*(z,u),

such that
1if0 <wu<p(x)

0 otherwise.

wwwz{

It is then straightforward to check that

/p*(w,u)du = /Op(x) du = p(z).

Hence, to sample from p(z) one can sample from p*(z,u) and then
ignore u. The full conditionals are of this augmented model are

plulz) = Upp(a)(u)
p(z|u) = Ua(z)

where A = {z;p(z) > u}. If A is easy to identify then the algorithm is
straightforward to implement, as shown in Figure 15.

A

£0X)

x® X

Figure 15. Slice sampling: given a previous sample, we sample a uniform vari-
able u(H'l') between 0 and f(z¥). One then samples z“t) in the interval where
f(z) > ul+D,

It can be difficult to identify A. It is then worth introducing several
auxiliary variables (Damien et al. 1999, Higdon 1998). For example
assume that

p(z) o« [] filx),
=1

where the fj(-)’s are positive functions, not necessarily densities. Let
us introduce L auxiliary variables (ui,...,ur) and define

L

p*(xaula s ,UL) X H ]I[O,fl(:v)] (Ul)
=1
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Then one can also check that [ p*(z,u1,...,ur)du ...duy = p(x) as

L L
ﬁ)*(w,ul, coyup)du ... dug, oc/H Lo, i@ (w)dus - .. dug, = H fi(z).
=1 =1

The slice sampler to sample from p*(z,u1,...,ur) proceeds as shown
in Figure 16. Algorithmic improvements and convergence results are
presented in (Mira 1999, Neal 2000).

1. Forl=1,...,L

— Sample ul(i) ~ U[O,fl(z(i_l))] ().

2. Sample 29 ~ U 4 (x) where A®) = {x;fl(:n) > ul(i),l =1,.. .,L}.

Figure 16. Slice Sampler.

3.7. REVERSIBLE JuMP MCMC

In this section, we attack the more complex problem of model selec-
tion. Typical examples include estimating the number of neurons in
a neural network (Andrieu, de Freitas and Doucet 1999a, Holmes and
Mallick 1998, Rios Insua and Miiller 1998), the number of splines in a
multivariate adaptive splines regression (MARS) model (Holmes and
Denison 2001: this issue), the number of sinusoids in a noisy signal
(Andrieu and Doucet 1999), the number of lags in an autoregressive
process (Troughton and Godsill 1998), the number of components in
a mixture (Richardson and Green 1997), the number of levels in a
change-point process (Green 1995), the number of components in a
mixture of factor analysers (Fokoué and Titterington 2001: this issue),
the appropriate structure of a graphical model (Friedman and Koller
2001, Giudici and Castelo 2001: this issue) or the best set of input
variables (Lee 2001: this issue).

Given a family of M models {M,;;m =1,..., N}, we will focus on
constructing ergodic Markov chains admitting p(m, z,) as the invariant
distribution. For simplicity, we avoid the treatment of nonparametric
model averaging techniques; see for example (Escobar and West 1995,
Green and Richardson 2000).
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Up to this section, we have been comparing densities in the ac-
ceptance ratio. However, if we are carrying out model selection, then
comparing the densities of objects in different dimensions has no mean-
ing. It is like trying to compare spheres with circles. Instead, we have to
be more formal and compare distributions P(dz) = Pr(z € dz) under
a common measure of volume. The distribution P(dz) will be assumed
to admit a density p(xz) with respect to a measure of interest, e.g.
Lebesgue in the continuous case: P(dz) = p(z)dz. The acceptance ratio
will now include the ratio of the densities and the ratio of the measures
(Radon Nikodym derivative). The latter gives rise to a Jacobian term.
To compare densities point-wise, we need, therefore, to map the two
models to a common dimension as illustrated in Figure 17.

Bivariate density

P(X4.X5)

Compare both
densities
point-wise
Univariate density Uniformly expanded density
p(xy) P(X 4,X*)
Propose x *
uniformly

Figure 17. To compare a 1D model against a 2D model, we first have to map the
first model so that both models have common measure (area in this case).

The parameters z,, € X, (e.g. X, = R') are model dependent.
Hence, to find the right model and parameters we could sample over
the model indicator and the product space H%Zl X (Carlin and Chib
1995). Recently, Green introduced a strategy that avoids this expensive
search over the full product space (Green 1995). In particular one
samples on a much smaller union space X = UM_ {m} x X,,. The
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full target distribution defined in this space is given by

M
p(kad$) = Z p(madwm)]l{m}xé\fm(kax)'

m=1

That is, the probability of k& being equal to m and z belonging to an
infinitesimal set centred around z,, is p(m, dz,,). By marginalisation,
we obtain the probability of being in subspace A,.

Green’s method allows the sampler to jump between the different
subspaces. To ensure a common measure, it requires the extension of
each pair of communicating spaces, X, and A&,,, to ?m,n 2 X, x Umn
and Tn,m L X, x Uy, m- It also requires the definition of a deterministic,
differentiable, invertible dimension matching function f,_,,, between
?m,n and ?n,ma

(xma'ufm,n) = fn—)m(mnaun,m) = (qu—)m(xnaun,m)af#—)m(xnaun,m))'

We define fy,—pn such that fr,n(fnosm(Tn, Unm)) = (Tn, Unm). The
choice of the extended spaces, deterministic transformation f,, ., and
proposal distributions for gn—ym(+| 7, zr) and g¢m—n (| m, Tp,) is problem
dependent and needs to be addressed on a case by case basis.

If the current state of the chain is (n,z,), we move to (m,z,,) by
generating unm ~ gnom(-|n,zy), ensuring that we have reversibility
(Zm> Ummn) = fnom(@n, Unm), and accepting the move according to the
probability ratio

A i {1 PTE) | G0l)  onimalmaty) )
p(n,mn) Q(m|n) Qn—>m(un,m|n,zn)

where z}, = f¥, (%n,Unm) and Jy, .. is the Jacobian of the trans-
formation f,_,, (when only continuous variables are involved in the
transformation)

Ofnsm ("Ema um,n)
8(37ma um,n)

T fmosn = ‘det

To illustrate this, assume that we are concerned with sampling the
locations p and number k of components of a mixture. For example we
might want to estimate the locations and number of basis functions in
kernel regression and classification, the number of mixture components
in a finite mixture model, or the location and number of segments in a
segmentation problem. Here, we could define a merge move that com-
bines two nearby components and a split move that breaks a component
into two nearby ones. The merge move involves randomly selecting a
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component (41) and then combining it with its closest neighbour (us2)
into a single component y, whose new location is

_p1 e
H="

The corresponding split move that guarantees reversibility, involves
splitting a randomly chosen component as follows

p1 = p— Unmf

M2 = p+ un,mﬂ

where [ is a simulation parameter and, for example, upm ~ U 1)-
Note that to ensure reversibility, we only perform the merge move if
|11 — pe|| < 28. The acceptance ratio for the split move is

1
. plk+ 1, pps1)  %q1 1
-Asplit:mln{la ( +1) X kal X X Tsplit ¢ 5
&

p(k, pr) p(un,m)

where 1/k denotes the probability of choosing, uniformly at random,
one of the & components. The Jacobian is

~sareaay| = 4l

Similarly, for the merge move, we have

1

A —mind1 p(k — 1, pp_1) w 1 7

merge — ’ merge (s
g p(k, k) i !

Jsplit

where Jmerge = 1/20.

Reversible jump is a mixture of MCMC kernels (moves). In addition,
to the split and merge moves, we could have other moves such as birth
of a component, death of a component and a simple update of the
locations. The various moves are carried out according to the mixture
probabilities (b, dg, Mg, Sk, ux), as shown in Figure 18. In fact, it is the
flexibility of including so many possible moves that can make reversible
jump a more powerful model selection strategy than schemes based on
model selection using a mixture indicator or diffusion processes using
only birth and death moves (Stephens 1997). However, the problem
with reversible jump MCMC is that engineering reversible moves is a
very tricky, time-consuming task.
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1. Initialisation: set (k(©), u(9)).
2. Fori=0to N -1

— Sample u ~ Ujg 13-
= If (u<by)
e then “birth” move.
o elseif (u < by + dj) then “death” move.
o elseif (u < b +di + sk) then “split” move.
o elseif (u < by +dg + sk +myg) then “merge” move.
e else update.
End If.

— Sample other parameters.

Figure 18. Generic reversible jump MCMC.

4. The MCMC Frontiers

4.1. CONVERGENCE AND PERFECT SAMPLING

Determining the length of the Markov chain is a difficult task. In prac-
tice, one often discards an initial set of samples (burn-in) to avoid
starting biases. In addition, one can apply several graphical and sta-
tistical tests to assess, roughly, if the chain has stabilised (Robert and
Casella 1999, Chapter 8). In general, none of these tests provide entirely
satisfactory diagnostics.

Several theoreticians have tried to bound the mizing time; that
is, the minimum number of steps required for the distribution of the
Markov chain K to be close to the target p(x). (Here, we present a, by
no means exhaustive, summary of some of the available results.) If we
measure closeness with the total variation norm A, (¢), where

Au0) = [KOC) () = 5 [ (KO ko)~ p0)) dy,
then the mixing time is
Tp(€) = min{t: Ay(t') <eforall t’ >t}.

If the state space X is finite and reversibility holds true, then the
transition operator K (K f(z) = Y K (y|z)f(y)) is self adjoint on La(p).
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That is,
(Kflg) = (f|Kg),
where f and g are real functions and we have used the bra-ket notation

for the inner product (f|g) = Y f(z)g(z)p(x). This implies that K has
real eigenvalues

1:>\1>>\22)\32"'2)\\X|>_1

and an orthonormal basis of real eigenfunctions f;, such that K f; =
Aifi- This spectral decomposition and the Cauchy-Schwartz inequality
allow us to obtain a bound on the total variation norm

Ag(t) < AL

2v/p(z)

where A\, = max(A2, |Ax||) (Diaconis and Saloff-Coste 1998, Jerrum
and Sinclair 1996). This classical result give us a geometric convergence
rate in terms of eigenvalues. Geometric bounds have also been obtained
in general state spaces using the tools of regeneration and Lyapunov-
Foster conditions (Meyn and Tweedie 1993).

The next logical step is to bound the second eigenvalue. There are
several inequalities (Cheeger, Poincaré, Nash) from differential geom-
etry that allows us to obtain these bounds (Diaconis and Saloff-Coste
1998). For example, one could use Cheeger’s inequality to obtain the

following bound
CI)2
1-20 <o <1-—,

where ® is the conductance of the Markov chain

& — . Zzes,yesc p(z) K (y|z)
= min
0<p(S)<1/2;5C X p(S)

Intuitively, one can interpret this quantity as the readiness of the chain
to escape from any small region S of the state space and, hence, make
rapid progress towards equilibrium (Jerrum and Sinclair 1996).

These mathematical tools have been applied to show that simple
MCMC algorithms (mostly Metropolis) run in time that is polynomial
in the dimension d of the state space, thereby escaping the exponen-
tial curse of dimensionality. Polynomial time sampling algorithms have
been obtained in the following important scenarios:

1. Computing the volume of a convex body in d dimensions, where d
is large (Dyer et al. 1991).

2. Sampling from log-concave distributions (Applegate and Kannan
1991).
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3. Sampling from truncated multivariate Gaussians (Kannan and Li
1996).

4. Computing the permanent of a matrix (Jerrum, Sinclair and Vigoda
2000).

The last problem is equivalent to sampling matchings from a bipartite
graph; a problem that manifests itself in many ways in machine learning
(e.g., stereo matching and data association).

Although the theoretical results are still far from the practice of
MCMC, they will eventually provide better guidelines on how to de-
sign and choose algorithms. Already, some results tell us, for example,
that it is not wise to use the independent Metropolis sampler in high
dimensions (Mengersen and Tweedie 1996).

A remarkable recent breakthrough was the development of algo-
rithms for perfect sampling. These algorithms are guaranteed to give
us an independent sample from p(z) under certain restrictions. The
two major players are coupling from the past (Propp and Wilson 1998)
and Fill’s algorithm (Fill 1998). From a practical point of view, these
algorithms are still limited and, in many cases, computationally inef-
ficient. However, some steps are being taken towards obtaining more
general perfect samplers; for example perfect slice samplers (Casella,
Mengersen, Robert and Titterington 1999).

4.2. AbpAPTIVE MCMC

If we look at the chain on the top right of Figure 7, we notice that the
chain stays at each state for a long time. This tells us that we should
reduce the variance of the proposal distribution. Ideally, one would like
to automate this process of choosing the proposal distribution as much
as possible. That is, one should use the information in the samples to
update the parameters of the proposal distribution so as to obtain a
distribution that is either closer to the target distribution, that ensures
a suitable acceptance rate, or that minimises the variance of the estima-
tor of interest. However, one should not allow adaptation to take place
infinitely often in a naive way because this can disturb the stationary
distribution. This problem arises because by using the past information
infinitely often, we violate the Markov property of the transition kernel.
That is, p(z®@ |2,z ... 2¢~D) no longer simplifies to p(z(? |z(-1).
In particular, Gelfand and Sahu (1994) present a pathological example,
where the stationary distribution is disturbed despite the fact that each
participating kernel has the same stationary distribution.

To avoid this problem, one could carry out adaptation only during
an initial fixed number of steps, and then use standard MCMC sim-
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ulation to ensure convergence to the right distribution. Two methods
for doing this are presented in (Gelfand and Sahu 1994). The first
is based on the idea of running several chains in parallel and using
sampling-importance resampling (Rubin 1988) to multiply the kernels
that are doing well and suppress the others. In this approach, one uses
an approximation to the marginal density of the chain as proposal. The
second method simply involves monitoring the transition kernel and
changing one of its components (for example the proposal distribution)
S0 as to improve mixing. A similar method that guarantees a particular
acceptance rate is discussed in (Browne and Draper 2000).

There are, however, a few adaptive MCMC methods that allow one
to perform adaptation continuously without disturbing the Markov
property, including delayed rejection (Tierney and Mira 1999), parallel
chains (Gilks and Roberts 1996) and regeneration (Gilks, Roberts and
Sahu 1998, Mykland, Tierney and Yu 1995). These methods are, unfor-
tunately, inefficient in many ways and much more research is required
in this exciting area.

4.3. SEQUENTIAL MONTE CARLO AND PARTICLE FILTERS

Sequential Monte Carlo (SMC) methods allow us to carry out on-
line approximation of probability distributions using samples (parti-
cles). They are very useful in scenarios involving real-time signal pro-
cessing, where data arrival is inherently sequential. Furthermore, one
might wish to adopt a sequential processing strategy to deal with non-
stationarity in signals, so that information from the recent past is given
greater weighting than information from the distant past. Computa-
tional simplicity in the form of not having to store all the data might
also constitute an additional motivating factor for these methods.

In the SMC setting, we assume that we have an initial distribution,
a dynamic model and measurement model

p (o)
P (zt|To:t—1,y1:4-1) fort >1
P (Ye|To, yr:—1) for ¢ >1

We denote by zo.; 2 {z, ...,z } and y1.4 = {91, ..., ys }, respectively, the
states and the observations up to time ¢. Note that we could assume
Markov transitions and conditional independence to simplify the model;
p($t|wo:t—1,y1:t—1) = p(ivt|$t—1) and p(yt|$o:t,y1:t—1) = p(yt|$t)- How-
ever, this assumption is not necessary in the SMC framework.

Our aim is to estimate recursively in time the posterior p (zo.t| y1:t)
and its associated features including the marginal distribution p (| y1.¢),
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Figure 19. In this example, the bootstrap filter starts at time ¢ — 1 with an un-
weighted measure {i,@l, N7'}, which provides an approximation of p(x;—1|y1:4—2)-
For each particle we compute the importance weights using the information at time
t — 1. This results in the weighted measure {iﬁ'_)l,a,ﬁ?l}, which yields an approx-
imation p(x¢—1|y1:t—1). Subsequently, the resampling step selects only the “fittest”

particles to obtain the unweighted measure {xgi_)l, N~'}, which is still an approxi-
mation of p(x¢—1|y1:1—1) - Finally, the sampling (prediction) step introduces variety,
resulting in the measure {igl), N~'}, which is an approximation of p(x|y1.t—1).

known as the filtering distribution, and the expectations

I(fe) = Bp(woulyra) [t (z0:)]

A generic SMC algorithm is depicted in Figure 19. Given N particles
{mgzl_l}i]\il at time ¢ — 1, approximately distributed according to the
distribution p(zo:—1|y1:4—1), SMC methods allow us to compute N
particles {33(()11}?;1 approximately distributed according to the poste-
rior p(zo.t|y1:t), at time ¢. Since we cannot sample from the posterior
directly, the SMC update is accomplished by introducing an appropri-
ate importance proposal distribution g(z¢.;) from which we can obtain
samples. The samples are then appropriately weighted.

In generic SMC simulation, one needs to extend the current paths
{mgzl_l}i]\il to obtain new paths {5(()135}1]\;1 using the proposal distribu-
tion q(Zo.t|y1.t) given by

q(Zo:t|y1:t) Z/Q(fO:t|$0:t—1a Y1:t) P(Z0:t—1 |Y1:0—1) dT0:1—1 -
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Sequential importance sampling step

— Fori=1,...,N, sample from the transition priors
o?ﬁi) ~ g (ft|$(()?s—1aylzt)

and set 0 _—
~(17 A ~(1 1
Lot = (mt 7x0:t—1)
— For i =1,..., N, evaluate and normalize the importance weights
p (w7 p (3710801, 11
qi <5§i)|$(()?s—1ay1:t)

Selection step

YN
— Multiply/Discard particles {;F((fi} with high/low importance
K3

) AN
weights w,gz) to obtain IV particles {%:t}i:{

Figure 20. Simple SMC algorithm at time ¢. For filtering purposes, there is no need
for storing or resampling the past trajectories.

To make this integral tractable, we only propose to modify the particles
at time t, and leave the past trajectories intact. Consequently
q(To:tly1:t) = p(@o—1|y1:0-1)q(Tt| 011, Y1:t)
The samples from ¢(-), must be weighted by the importance weights
_ P@oualy1e) _ p(@oealyi) p(Eelzo:e 1, Y1)
q(Tot|y1:t)  p(rot—1|y1t—1) ¢(Zt|To:t—1,Y1:t)

~ D (Y| Te) p (Ze|To:t—1, Y1:6—1)
gt (Zt|zost—1,Y1:t)

(22)

From equation (22), we note that the optimal importance distribution
is

q(T|o:t—1,Y1:4) = P(Tt|To:t—1, Y1:t)-
(When using this proposal, one might still encounter difficulties if the

ratio of the first two terms of equation (22) differs significantly from 1
(Andrieu, Doucet and Punskaya 2001, Pitt and Shephard 1999).) The
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optimal importance distribution can be difficult to evaluate. One can
adopt, instead, the transition prior as proposal distribution

q(Z¢|To:t—1,y1:4) = P (Te|To:t—1, Y1:6—1)

in which case the importance weights are given by the likelihood func-
tion
wy o< p (Y| Ty) -

This simplified version of SMC has appeared under many names, in-
cluding condensation (Isard and Blake 1996), survival of the fittest
(Kanazawa, Koller and Russell 1995) and the bootstrap filter (Gordon,
Salmond and Smith 1993). The importance sampling framework allows
us to design more principled and “clever” proposal distributions. For
instance, one can adopt suboptimal filters and other approximation
methods that make use of the information available at time ¢ to generate
the proposal distribution (Doucet, Godsill and Andrieu 2000, de Freitas
et al. 2000, Pitt and Shephard 1999, van der Merwe, Doucet, de Freitas
and Wan 2000). In fact, in some restricted situations, one may interpret
the likelihood as a distribution in terms of the states and sample from
it directly. In doing so, the importance weights become equal to the
transition prior (Fox, Thrun, Burgard and Dellaert 2001).

After the importance sampling step, a selection scheme associates
to each particle i((f% a number of “children”, say N; € N, such that
Zfil N; = N. This selection step is what allows us to track moving
target distributions efficiently by choosing the fittest particles. There
are various selection schemes in the literature, but their performance
varies in terms of var [N;] (Doucet et al. 2001).

An important feature of the selection routine is that its interface only
depends on particle indices and weights. That is, it can be treated as a
black-box routine that does not require any knowledge of what a par-
ticle represents (e.g., variables, parameters, models). This enables one
to implement variable and model selection schemes straightforwardly.
The simplicity of the coding of complex models is, indeed, one of the
major advantages of these algorithms.

It is also possible to introduce MCMC steps of invariant distri-
bution p(zg.t|y1.) on each particle (Andrieu, de Freitas and Doucet
1999b, Gilks and Berzuini 1998, MacEachern, Clyde and Liu 1999).
The basic idea is that if the particles are distributed according to
the posterior distribution p(2o.|y1.¢), then applying a Markov chain
transition kernel K (z}.,|zo.t), with invariant distribution p(:|y1.t) such
that [ K(z}..|zo:t)p(zot|y1:t) = p(rh.4|y1:¢), still results in a set of parti-
cles distributed according to the posterior of interest. However, the
new particles might have been moved to more interesting areas of
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the state-space. In fact, by applying a Markov transition kernel, the
total variation of the current distribution with respect to the invariant
distribution can only decrease. Note that we can incorporate any of the
standard MCMC methods, such as the Gibbs sampler, MH algorithm
and reversible jump MCMC, into the filtering framework, but we no
longer require the kernel to be ergodic.

4.4. THE MACHINE LEARNING FRONTIER

The machine learning frontier is characterised by large dimensional
models, massive datasets and many and varied applications. Massive
datasets pose no problem in the SMC context. However, in batch MCMC
simulation it is often not possible to load the entire dataset into mem-
ory. A few solutions based on importance sampling have been proposed
recently (Ridgeway 1999), but there is still great room for innovation
in this area.

Despite the auspicious polynomial bounds on the mixing time, it is
an arduous task to design efficient samplers in high dimensions. The
combination of sampling algorithms with either gradient optimisation
or exact methods has proved to be very useful. Gradient optimisation
is inherent to Langevin algorithms and hybrid Monte Carlo. These al-
gorithms have been shown to work with large dimensional models such
as neural networks (Neal 1996) and Gaussian processes (Barber and
Williams 1997). Information about derivatives of the target distribution
also forms an integral part of many adaptive schemes, as discussed
in Section 2.3. Recently, it has been argued that the combination of
MCMC and variational optimisation techniques can also lead to more
efficient sampling (de Freitas et al. 2001).

The combination of exact inference with sampling methods within
the framework of Rao-Blackwellisation (Casella and Robert 1996) can
also result in great improvements. Suppose we can divide the hidden
variables z into two groups, u and v, such that p(z) = p(v|u)p(u)
and, conditional on u, the conditional posterior distribution p(v|u) is
analytically tractable. Then we can easily marginalise out v from the
posterior, and only need to focus on sampling from p(u), which lies in
a space of reduced dimension. That is, we sample u() ~ p(u) and then
use exact inference to compute

1 .
plv) =+ S pwu®)
=1

By identifying “troublesome” variables and sampling them, the rest of
the problem can often be solved easily using exact algorithms such as
Kalman filters, HMMs or junction trees. For example, one can apply
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this technique to sample variables that eliminate loops in graphical
models and then compute the remaining variables with efficient an-
alytical algorithms (Jensen et al. 1995, Wilkinson and Yeung 2001).
Other application areas include dynamic Bayesian networks (Doucet,
de Freitas, Murphy and Russell 2000), conditionally Gaussian models
(Carter and Kohn 1994, De Jong and Shephard 1995, Doucet 1998)
and model averaging for graphical models (Friedman and Koller 2001:
this issue). The problem of how to automatically identify which vari-
ables should be sampled, and which can be handled analytically is still
open. An interesting development is the augmentation of high dimen-
sional models with low dimensional artificial variables. By sampling
only the artificial variables, the original model decouples into simpler,
more tractable submodels (Albert and Chib 1993, Andrieu, de Freitas
and Doucet 2001, Wood and Kohn 1998); see also (Holmes and Deni-
son 2001: this issue). This strategy allows one to map probabilistic
classification problems to simpler regression problems.

The design of efficient sampling methods most of the times hinges on
awareness of the basic building blocks of MCMC (mixtures of kernels,
augmentation strategies and blocking) and on careful design of the
proposal mechanisms. The latter requires domain specific knowledge
and heuristics. There are great opportunities for combining existing
sub-optimal algorithms with MCMC in many machine learning prob-
lems. Some areas that are already benefiting from sampling methods
include:

1. Computer vision: Tracking (Isard and Blake 1996, Ormoneit,
Lemieux and Fleet 2001), stereo matching (Dellaert, Seitz, Thorpe
and Thrun 2001: this issue), colour constancy (Forsyth 1999), restora-
tion of old movies (Morris, Fitzgerald and Kokaram 1996) and
segmentation (Clark and Quinn 1999, Kam 2000, Tu and Zhu 2001).

2. Web statistics: Estimating coverage of search engines, propor-
tions belonging to specific domains and the average size of web
pages (Bar-Yossef, Berg, Chien, Fakcharoenphol and Weitz 2000).

3. Speech and audio processing: Signal enhancement (Godsill and
Rayner 1998, Vermaak, Andrieu, Doucet and Godsill 1999).

4. Probabilistic graphical models: For example (Gilks et al. 1994,
Wilkinson and Yeung 2001) and several papers in this issue.

5. Regression and classification: Neural networks and kernel ma-
chines (Andrieu, de Freitas and Doucet 1999a, Holmes and Mallick
1998, Neal 1996, Miiller and Rios Insua 1998), Gaussian processes
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(Barber and Williams 1997), CART (Denison, Mallick and Smith
1998) and MARS (Holmes and Denison 2001: this issue).

. Computer graphics: Light transport (Veach and Guibas 1997)

and sampling plausible solutions to multi-body constraint problems
(Chenney and Forsyth 2000).

. Data association: Vehicle matching in highway systems (Pasula

et al. 1999) and multitarget tracking (Bergman 1999).

. Decision theory: Partially observable Markov decision Processes

(POMDPs) (Thrun 2000, Salmond and Gordon 2001), abstract
Markov policies (Bui, Venkatesh and West 1999) and influence
diagrams (Bielza, Miiller and Rios Insua 2001).

. First order probabilistic logic: (Pasula and Russell 2001).

Genetics and Molecular biology: DNA microarray data (West,
Nevins, Marks, Spang and Zuzan 2001), cancer gene mapping (New-
ton and Lee 2000), protein alignment (Neuwald, Liu, Lipman and
Lawrence 1997) and linkage analysis (Jensen et al. 1995).

Robotics: Robot localisation and map building (Fox et al. 2001).

Classical mixture models: Mixtures of independent factor anal-
ysers (Utsugi 2001) and mixtures of factor analysers (Fokoué and
Titterington 2001: this issue).

We hope that this review will be a useful resource to people wishing
carry out further research at the interface between MCMC and

machine learning. For conciseness, we have skipped many interesting
ideas, including tempering and coupling. For more details, we advise
the readers to consult the references at the end of this paper.
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