
Some references for probability

(We will be closest to chapter two of K&F—posted)

Wasserman, “All of statistics”
(Vision lab has a few copies that we can lend out). 

Forsyth and Ponce chapter
   http://luthuli.cs.uiuc.edu/~daf/book/bookpages/pdf/probability.pdf

Your favorite intro to probability book (e.g., “Mathematical statistics 
and Data Analysis,” by John Rice.)

Google (and WikiPedia)

Probability review

Formulas that you should be very comfortable with are 
marked by   . 

Interpretations of probability

1) Representation of expected frequency

2) Degree of belief

*

Basic terminology and rules

Space of outcomes (often denoted by  !)

Event (subset of !)

Denote the space of measurable events (one we want to 
assign a probability to) by S. 
S must include 
S is closed under set operations 

          

!  and  "

 ! ," #S $  ! %" #S ,  ! &" #S ,  ! C ='(! #S , etc. 

Basic terminology and rules

 A probability distribution P over (X,S) is a mapping 
from events in S to real values such that

          
!If a!S,!!!P(a) " 0

If ! ," #S, and a$ b=%, then P(a&b) = P(a)+ P(b) 
P(!) = 1



Basic terminology and rules

!If a!S,!!!P(a)![0,1]

If ! ," #S,  then P(a$b) = P(a)+ P(b)% P(a&b) 
P(!) = 0

The probabilities over disjoint sets that cover P(!) sum to 1. 

We can further derive additional familiar facts Conditional probability (definition)

      

Basic terminology and rules

P A B( ) !!!P(A" B)
P(B)

!   *

Example, what is the probability that you have rolled 2, 
given that you know you have rolled a prime number? 

Conditional probability (definition)

Applying a bit of algebra,

In general, we have the chain (product) rule

      

Basic terminology and rules

P A B( ) !!!P(A" B)
P(B)

!   

P A! B( ) != P(A)P(B A)

*P A1 ! A2( ) != P(A1)P(A2 A1)

P A1 ! A2 !!!!....!!!AN( ) != P(A1)P(A2 A1)P(A3 A1 ! A2 ) ....  P(AN A1 ! A2 !!!!....!!!AN"1) 

From before, we define conditional probability by

Applying a little bit more algebra,

      

Basic terminology and rules

P A B( ) !!!P(A" B)
P(B)

!   

P A! B( ) != P(A)P(B A)
and      P A! B( ) != P(B)P(A B)

and thus   P(B)P(A B)= P(A)P(B A)

and we get   P(A B) = P(A)P(B A)
P(B)

Bayes rule *



Example (continued)

Probability of disease given symptoms
!
! Suppose a TB test is 95% accurate
! Suppose that TB is in 0.1% of population

What is  P (TB | positive)?
!

!

Example (continued)

P(TB | positive)

= P(positive |TB)P(TB)
P(positive)

= P(positive |TB)P(TB)

P(positive |TB)P(TB)+ P(positive |
~
TB)P(

~
TB)

P(TB | positive)

= P(positive |TB)P(TB)
P(positive)

= P(positive |TB)P(TB)

P(positive |TB)P(TB)+ P(positive |
~
TB)P(

~
TB)

= (0.95)(0.001)
(0.95)(0.001)+ (0.05)(0.999)

! 0.0187

Random variables
! Defined by functions mapping outcomes to values
! By choice, whatever we are interested in
! Typically denoted by uppercase letters (e.g., X)
! Generic values are corresponding lower case letters 
! Shorthand: P(x) = P(X=x)
! Value “type” is arbitrary (typically categorical or real) 

Example (from K&F)
! Outcomes are student grades (A,B,C)
! Random variable G=fGRADE(student)
!
!

Random Variables

P(A) !!!P(G = A)!!!P( w"#!:! fGRADE (w) = A{ })  



Joint Distributions of Random Variables

Joint distribution of random variables
!
!
Conditional definition, Bayes rule, chain rule all apply. 

Marginal distributions (“sum rule”) 

Chain (product) rule (two variable case of chain rule) 
!

*

*

P(X,Y ) !!!P(X = x,Y = y)!!!P( w"#!:!X(w) = x and Y(w) = y{ })  

P(X) != P(X,Y )
Y
!

P(X,Y ) != P(X |Y )P(Y )

P(X Y ) != P(Y X)P(X)
P(Y )

=
P(Y X)P(X)

P(X,Y )
X
!

P(X |Y )" P(Y X)P(X)           (when Y is constant, i.e., evidence)

Basic terminology and rules

Conditional probability
!
!

Bayes

!
*

*

*

P(X Y ) != P(X,Y )
P(X,Y )

X
!

Often we will deal with quantities or functions which are 
proportional to probabilities (OK if we just want argmax)

To convert such quantities to probabilities we normalize.

 

Example: 

Normalization

if   p(x) !! P(X = x)  then  P(X = x) != p(x)
p(x)

x
!

P(X |Y ) !! P(X,Y )

P(X |Y ) = P(X,Y )
P(X,Y )

X
"

Independence

X ! Y      "     P(X Y ) != P(X)      or  P(Y)=0

X ! Y      "     P(X,Y ) != P(X)P(Y )

*

*

 Note that Bishop uses !  instead of !

This can cause confusion. If P(Y) is zero, 
the other case cannot be used (divide by 
zero). However, in this case, Y never 
happens, and so we (a priori) have a 
choice to declare whether X is 
independent from Y or not. However, 
under scrutiny, the choice does make 
sense, and allows consistency with the 
second definition. Note that the second 
formula works in this (weird) case because 
if P(Y)=0, then P(X,Y) is also 0. 



Conditional Independence

X ! Y | Z      "     P(X Y ,Z ) != P(X | Z )      or   P(Y,Z)=0

*
Equivalent, sometimes more convenient definition

X ! Y | Z      "     P(X,Y Z ) != P(X | Z )P(Y | Z )

*

Probabilistic Queries

Organize variables into
Evidence (observed), E
Query (what you want to know), Y
Hidden (leftover), X     (for completeness)

Generic Query:   P(Y|E) 
This leads to a distribution over Y given the evidence
Note that X is marginalized out
We can use this to make a decision
Simplest is most probable, i.e., 

MAP Query (most probably configuration of variables):      

Bold face because these 
are vectors of variables

MAP W |E( )= Argmax
w

P(W,E)         (W=Y!X)

Argmax
Y

P(Y,E)

Example

X

Y

0.04! ! 0.36

0.30! ! 0.30

y1 y2

x1

x2

P(x
1
, y

2
) = P(X= x

1 AND Y= y
2
)

X

Y

0.04! ! 0.36

0.30! ! 0.30

y1 y2

x1

x2

0.4
0.6

P(x1)=P(x1,y1)+P(x1,y2)
 [i.e., sum across]

0.34 0.66

(Recall that P(x) is short hand for the probability that the 
random variable X takes the value x, similarly for P(y)).

P(x2)

P(x)

P(x1)



X

Y

0.04! !

0.30! !

y1

x1

x2

P(0.34)

P(x|y1)
0.04 / 0.34 
! !

0.30 / 0.34 
! !

(Recall that P(x|y1) is short hand for the probability 
that the random variable X takes the value x, given 
that the random variable Y has value y1)

X

Y

0.04! ! 0.36

0.30! ! 0.30

y1 y2

x1

x2

0.4
0.6

0.34 0.66

Arg max P(x,y) is (x1, y2)
Arg max P(x) is (x2)

Arg max P(y) is (y2)

Arg max P(x,y)  is not necessarily (Arg max P(x), Arg max P(y))  

Discrete Distributions (Bernoulli)

x ! 0,1{ }           (e.g., 1 is "heads" and 0 is "tails")

p x = 1 µ( ) = µ

Bern(x | µ) = µ x 1" µ( ) 1"x( )

Code for sampling a Bernoulli

a=rand()

if (a<u) return heads
else return tails



Discrete Distributions (Binomial)

How likely it is that we get m "heads" in N  tosses?

Bin m N ,µ( ) = N
m

!
"#

$
%&
µm 1' µ( )N'm

where N
m

!
"#

$
%&
( N!

(N 'm)!m!

Discrete Distributions (Binomial)

 

Probability distribution for getting m "heads" in N  tosses.

Bin m N ,µ( ) = N
m

!
"#

$
%&

Number of
ways to get
 m  heads
in N  tosses.

!"#
i µm 1' µ( )N'm

Probility of each
way to get m  heads
in N  tosses

! "$$ #$$

where N
m

!
"#

$
%&
( N!

(N 'm)!m!

Example
N=3, m=2
! HHT
  HTH
  THH

Multi-outcome Bernoulli

Simple extensions to Bernoulli to multiple 
outcomes (e.g., a six sided die). 

Let K be the number of outcomes.

Now we use vectors for u  and x,!i.e.,!u and x.

x is a vector of 0's and exactly one 1 for observed 
outcome (e.g., rolling 3 with a 6 sided die is (0,0,1,0,0,0).

p(x | u) = uk
xk

k=1

K

!           (note that uk
k=1

K

" = 1)

Multinomial

Extension of binomial to multiple outcomes. 
Let K be the number of outcomes.

Mult(m1,m2 ,!...,!mK ) =
N

m1 !!m2 !!!...!!!mK

!

"
#

$

%
& µk

mk

k'1

K

(

where  
N

m1 !!m2 !!!...!!!mK

!

"
#

$

%
& =

N !
m1!!!m2 !!!!...!!!mK !

!
"#

$
%&

and mk = N
k=1

K

)



Continuous Spaces

Outcome space is observation of real values (e.g., height, mass) 

Example, a random variable, X,  can take any value in [0,1] 
with equal probability.

We say that X is uniformly distributed over [0,1].

Here, P(X=x) = 0      (uncountable number of possibilities).

To deal with this, we use Probability Density Functions.

Probability Density Functions

 

p :!"!  is a probability density function for X if p(x) ! 0 and 

p(x)dx = 1
Val (X )
"

P(a # X # b) = p(x)dx
a

b

"         (Probality of the event that x $[a,b])

P(X $%X) & p(x) %X            (For small %X)

Note that P $[0,1] but p(x) can be larger than 1. 

Example one

A random variable is uniformly distributed between 0.4 and 0.6, 
and never occurs outside of that range. 

p(x) = !  x "[0.4,0.6]
0 otherwise

#
$
%

&%

p(x)dx =
0.4

0.6

' ! dx = 0.2( )
0.4

0.6

' ! = 1

! = 1
0.2

= 5      and thus    p(x) = 5  x "[0.4,0.6]
0 otherwise

#
$
%

&%
 

Example two

 

The univariate Gaussian (or Normal) distribution

!(µ,! 2 ) = 1
! 2"

e
# ! x#µ( ) 2

2! 2

 



Joint Density Functions

Analogous to univariate case (illustrated with two variables) 

p(x, y)dxdy = 1
Val (X )!Val (Y )
""

P(aX # X # bX , aY #Y # bY ) = p(x, y)dxdy
aX

bX

"
aY

bY

"  

Example--- multivariate Gaussian

 

! µ,!( ) = 1

2"( )
k
2 !

1
2

exp 1
2
x # µ( )T ! #1 x # µ( )$

%&
'
()  

! µ,* 2( ) = 1

2"( )
k
2 * i

i=1

k

+
exp 1

2
x # µ( )T diag(* 2 )( )#1

x # µ( )$
%&

'
()

= ! µi ,* i
2( )

i=1

k

+

If the variables are independent, then the covariance is diagonal

k is the number of 
variables (dimension)

Marginalization

p(x) = p(x, y)dy
!"

"

#

Conditional Distributions

p(y | x) = p(x, y)
p(x)

     where p(x) ! 0

p(x) = p(x, y)dy
!"

"

#

Can get this by 
marginalizing



Gaussian Facts

For a multivariate Gaussian p(xa , xb ) with 
variables partitioned into xa  and xb  we have:

p(xa ) is also Gaussian

and 

p(xa | xb ) is also Gaussian

Chapter 2.3 of Bishop has a very thorough 
treatment of the Gaussian distribution. 

Expectation

Ep X[ ] = x !P(x)
x
"         (discrete)

Ep X[ ] = x ! p(x) dx#        (continuous)

Ep X +Y[ ] = Ep X[ ]+ Ep Y[ ]

Implicit definition of a new random variable

Variance

Var(X) = Ep X ! Ep X[ ]( )2"
#$

%
&'

Var(X +Y ) =Var(X)+Var(Y )     (when X (  Y)

Var(aX) = a2 )Var(X)

Standard deviation, * X = Var(X)

Recall that this is 
our symbol for 
independent.

Sampling Continuous Distributions

• Suppose you want to generate samples from (i.e., simulate a 
probability distribution). 

• The typical tool at your disposal is a pseudo random 
number generator returning approximately uniformly 
distributed rational numbers in [0,1]

• Sampling Bernoulli processes is straightforward
• Variants of uniform distributions are also easy
• Example: p(x) = 5  x ![0.4,0.6]

0 otherwise

"
#
$

%$
 



Sampling Continuous Distributions

• N(0,1) is less obvious (there are standard fast methods)
• A general approach for sampling a continuous distribution

(sometimes call inverse transformation sampling) is based 
on the cumulative distribution function, CDF, denoted 
by"F(x) 

Cumulative Distribution Function

F(x) = P(X ! x)

= p(x)dx
"#

x

$     (continuous distributions)

Sampling Continuous Distributions
We know how to sample y uniformly from [0,1]

We want to map y! x "[#$,$] where is x distributed as p x( )

For simplicity, map them monotonically (bigger y! bigger x) 

All samples in U=[0,y] should map to total probability y over p(x).

Accounts for 0.3 
probability mass

sample
uniformly

For simplicity, map them monotonically (bigger y! bigger x) 
All samples within U=[0,y] should map to total probability y from p(x).

We know how to sample y uniformly from [0,1]
We want to map y! x "[#$,$] where is x distributed as p x( )



Sampling Continuous Distributions
We know how to sample y uniformly from [0,1]

We want to map y! x "[#$,$] where is x distributed as p x( )

For simplicity, map them monotonically (bigger y! bigger x) 

All samples in U=[0,y] should map to total probability y in p(x)

So U=[0, y] maps into P = [-$, x], where y= p( %x )d %x
#$

x

& = F x( )

Further, a sample y "[0,1] should map to x such that y = F x( )

In other words, x = F#1 y( )

Sampling Continuous Distributions

• To sample a distribution p(x)   (crude instructional algorithm)

 

Prepare and approximation of F(x)
in a vector F=(x1, x2, x3, ... , xN )

Loop

    sample y![0,1]
  find i so that F(xi)< y and F(xi+1)> y

report (xi +xi+1) / 2

Estimating the mean of a univariate Gaussian
Example (from Bishop, PRML)

Assume that the variance is known.
Given data points xi , what is the "best" estimate for the mean?

p u {xi}( )! p {xi} u( )      (assuming uniform prior)

p {xi} u( ) = p xi u( )
i
"

! e
#
xi#u( )2
2$ 2

i
"

We can maximize the probility by minimizing the negative log

! log e
!
xi!u( )2
2" 2

i
#

$

%
&

'

(
) * xi ! u( )2

i
+

uML = argmax
u

xi ! u( )2

i
+$%&

'
()

Differentiating and setting to zero reveals that 

u = 1
N

xi+



Estimating the mean of a univariate Gaussian
Example (from Bishop, PRML)

Assume that the variance is known.
Given data points xi , what is the "best" estimate for the mean?

The maximum likelihood estimate is  µML =
1
N

xi
i
!

But what if the number of points is small?
 
Lets consider the case where we want to incorporate 
prior information.

IE, let's do Bayes. What should we use for p(µ)?

p µ | {xi}( )!! p(µ)p({xi} | µ)

!!!= p(µ) p({xi} | µ)
i
"

! p(µ) exp #
xi # µ( )2
2$ 2

%

&
'

(

)
*

i
"

p µ | {xi}( )!! p(µ) exp " xi " µ( )2( )
i
#

By inspection, if p(µ)! exp " µ0 " µ( )2( )  then

the form of the posterior is the same as the prior. 

IE, given known variance, a conjugate prior for the
mean of the Gaussian is a Gaussian.

Conjugacy is convenient for several reasons, but one
motivating observation is Bayesian updating whereby 
yesterday's posterior is used for today's prior. 

Quick aside one (Bayesian update)

p(! ,x2,x1) = p x2 !( ) p x1 !( ) p !( )
= p x2 !( ) p ! x1( ) p x1( )

Consider two successive groups of observations that 
are conditionally independent given the model

 

p(! ,x2 x1) = p x2 !( ) p ! x1( )
updated prior, 
after seeing x1

!"# $#

so



Quick aside two (Conjugacy)

Informal definition: Given a likelihood function
l(! ,x)=p(x|! )    (we reverse !  and x when we call it a likelihood function)
a (prior) distribution is natural distribution where the posterior,
p(! | x)" p(x |! )p(! ), has the same form as p(! ). To find the MAP (maximum a posteriori) estimate, we maximize.

Maximizing is the same as minimizing the negative log. 

Back to our problem.

 

p µ | {xi}( )!! exp "
µ0 " µ( )2

# 0
2

$

%
&

'

(
)

conjugate prior for the likelihood
! "### $###

exp "
xi " µ( )2

# 2

$

%
&

'

(
)

i
*

likelihood
! "### $###

! log p µ | {xi}( )( )!= µ0 ! µ( )2

" 0
2 +

xi ! µ( )2

" 2
i
#

differentiating and setting derivatives to zero gives

µ0

" 0
2 +

1
" 2 xi

i
# = µ

" 0
2 +

Nµ
" 2

! log p µ | {xi}( )( )!= µ0 ! µ( )2

" 0
2 +

xi ! µ( )2

" 2
i
#

differentiating and setting derivatives to zero gives

µ0

" 0
2 +

1
" 2 xi

i
# = µ

" 0
2 +

Nµ
" 2

algebra reveals that

µMAP =

µ0

" 0
2 +

N
" 2 µML

1
" 0

2 +
N
" 2

=

µ0

" 0
2

1
" 0

2 +
N
" 2

+

N
" 2 µML

1
" 0

2 +
N
" 2

= " 2

" 2 +" 0
2N

µ0 +
N" 0

2

" 2 + N" 0
2 µML



Unknown variance or mean and variance
Example (from Bishop, PRML)

Similar stories can be told if the mean is known and the variance is 
not, or both are unknown. We will only set up the problem to have a 
look at the conjugate priors.

Simplify things by using the inverse of the covariance matrix which is 
called the precision matrix. 

In the univariate case this is simply: != 1
" 2

Example (from Bishop, PRML)

 

p xi{ } | !( ) = ! xi | µ, 1!( )
i=1

N

"

= !
2#

$
%&

'
()

1
2
exp * !

2
xi * µ( )2$

%&
'
()

+
,
-

.-

/
0
-

1-i=1

N

"

2!
N
2 exp * !

2
xi * µ( )2

i
3+

,
.

/
0
1

(u is constant)

constant

Known mean, unknown variance

Inspection reveals that multiplying this by a gamma distribution

Gam ! | a,b( ) = 1
" a( )b

a! a#1 exp(#b!)

yields a posterior of the same form. The normalization constant, " a( )  is the "gamma" 
function, which extends the concept of factorial to real numbers. " n( ) = n #1( )!,  for
postive integers n. Also " x +1( ) = x" x( ) for postive reals. 

“Inspection”

Gam ! | a,b( ) = 1
" a( )b

a! a#1 exp(#b!)$! a#1 exp(#b!)

p xi{ } | !( )"!
N
2 exp # !

2
xi # µ( )2

i
$%

&
'

(
)
*
= !

N
2 exp # !

2
K%

&
'

(
)
*

p xi{ } | !( )Gam ! | a,b( )"!
N
2! a#1 exp # !

2
K$

%
&

'
(
)
exp #b!{ }

= !
N
2( )+a#1( ) exp #! K

2( ) + b( ){ }

Gamma distribution illustrated (*)

From an on-line note by Kevin Murphy
(www.cs.ubc.ca/~murphyk/Teaching/CS340-Fall07/reading/NG.pdf) 

*



Unknown mean and variance
Example (from Bishop, PRML)

p u,!( ) = p(u | !)p(!)

= N u uo , "!( )#1( )Gam(! | a,b)

Here a,b,!  are constants. This is the normal-gamma 
(Gaussian-gamma) distribution.

(Derivation follows for completeness)

Unknown mean and variance
Example (from Bishop, PRML)

Indicates 
optional 
material

 

p xi{ } | !( ) = ! xi | µ, 1!( )
i=1

N

"

= !
2#

$
%&

'
()

1
2
exp * !

2
xi * µ( )2$

%&
'
()

+
,
-

.-

/
0
-

1-i=1

N

"

2!
N
2 exp * !

2
xi * µ( )2

i
3+

,
.

/
0
1

= !
N
2 exp * !

2
xi
2

i
3 + !µ xi

i
3 * N!

2
µ2+

,
.

/
0
1

(u is variable)

p xi{ } | u,!( )"!
N
2 exp # !

2
xi
2

i
$ !+!!µ xi

i
$ !#!N!

2
µ2%

&
'

(
)
*

= !
N
2 exp(# !µ2

2
)

+
,-

.
/0

N

exp !µ xi
i
$ # !

2
xi
2

i
$%

&
'

(
)
*

= !
N
2 exp(# !µ2

2
)

+
,-

.
/0

N

exp C!µ # D!( )

 

p xi{ } | u,!( )"!
N

2 exp(# !µ2

2
)

$
%&

'
()

N

exp C!µ # D!( )

So a conjugate prior of the form

p u,!( )"!
*

2 exp(# !µ2

2
)

$
%&

'
()

*

exp c!µ # d!( )

will do (recall that  exp(x)iexp(y) = exp(x+y)). 

xi
i
! 1

2
xi
2

i
!

From the previous slide



p u,!( )"!
#
2 exp($ !µ2

2
)

%
&'

(
)*

#

exp c!µ $ d!( )

= !
#
2 exp($ !#

2
µ2 )%

&'
(
)* exp c!µ $ d!( )

= !
#
2 exp($ !#

2
µ2 + c!µ $ d!)%

&'
(
)*

= !
#
2 exp $ !#

2
µ2 $ 2cµ

#
+ 2d

#
%
&'

(
)*

%
&'

(
)*

%

&'
(

)*

We now manipulate the formula to a 
more standard form. 

p u,!( )"!
#
2 exp $ !#

2
µ2 $ 2cµ

#
+ 2d

#
%
&'

(
)*

%
&'

(
)*

%

&'
(

)*

µ2 $ 2c
#

%
&'

(
)*
µ + 2d

#
!=! µ $ c

#
%
&'

(
)*

2

+ 2d
#

$ c2

# 2

p u,!( )"!
#
2 exp $ !#

2
µ $ c

#
%
&'

(
)*

2%

&
'

(

)
* exp $! d $ c2

2#
%
&'

(
)*

%
&'

(
)*

= exp $ !#
2

µ $ c
#

%
&'

(
)*

2%

&
'

(

)
* !

#
2 exp $! d $ c2

2#
%
&'

(
)*

%
&'

(
)*

%

&
'

(

)
*

From the previous slide

 

p u,!( )" exp # !$
2

µ # c
$

%
&'

(
)*

2%

&
'

(

)
* !

$
2 exp #! d # c2

2$
%
&'

(
)*

%
&'

(
)*

%

&
'

(

)
*
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where µ0 =
c
!

  and  a = 1+ !
2

  (*)  and b = d " c2
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Recall that  Gam # | a,b( )$#a"1 exp "b#( )

 

p µ,!( ) = p µ | !( ) p !( ) = ! µ | µ0 , !"( )#1( )Gam ! | a,b( )
This is called the Gaussian-Gamma function

From the previous slide

*According to Bishop, this is how the gamma parameter, a, relates to the Gaussian 
variance scale beta, but the powers of lambda from the normal do not seem to be 
accounted for --- regardless, the conjugate formula is still correct.

Beta (and Dirichlet) distributions

Beta (binary case) 
Conjugate prior for the Bernoulli and 
binomial distributions

Dirichlet (multi-outcome case)
Conjugate priors for the multi outcome 
Bernoulli and multinomial distributions



Beta(u | a,b) = !(a + b)
!(a)!(b)

ua"1 1" u( )b"1

Beta(u | a,b) = !(a + b)
!(a)!(b)

ua"1 1" u( )b"1

Bern(x | µ) = µ x 1! µ( ) 1!x( )

(You should be able to tell 
the rest of the story ... )

More on priors

If we leave off the prior, then we are completely ignorant.

Note that the prior might be the uniform distribution over all 
numbers

This is not a PDF! 

Such priors are called improper. 

A more interesting example is p(k)=1/k.  

Everything can work out fine if the posterior is a PDF. 



Bayesian Sequential Update

• For independent sequential events

p ! | D1:N( ) = p !( ) p Di |!( )( )
i=1

N"1

#$
%
&

'
(
)
p DN |!( )

New priorAlready introduced with the 
example for the Bayesian 
estimate of the mean

Predictive Distribution

• The general predictive distribution marginalizes over 
uncertain model parameters

p x | X( ) = p(x |!)p(! | X)d!"

Test data Training data

Bayesian statistics summary

• Bayesian statistical models
– We prefer generative models for likelihood (and prior)
– Conjugate priors are useful
– Bayesian updating for independent sequence of data

• Inference uses Bayes rule to “invert” the forward model
• Predictive distribution

– Marginalizes out uncertainty about models
• Related topics coming soon

– Model selection
– Decision making


