
Bayesian statistics summary

• Bayesian statistical models
– We prefer generative models for likelihood (and prior)
– Conjugate priors are preferred when they are accurate enough 
– Bayesian updating for sequences of independent data

• Yesterday’s posterior becomes today’s prior

• Inference uses Bayes rule to “invert” the forward model
– Result is the posterior distribution
– MAP estimate provides a single “best” number (often not the best)

Bayesian statistics summary

• Related topics coming up
– Predictive distribution

• Marginalizes out uncertainty about models
– Model selection
– Estimation and decision making

Bayesian Sequential Update
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Posterior from 1:N-1 
is now the prior

Already introduced with the 
example for the Bayesian 
estimate of the mean

Predictive Distribution

p x | X( ) = p(x |!)p(! | X)d!"

Test data Training data



Model Selection

• Model selection refers to choosing among different 
instances within a model class (1) or different model 
classes!(2). 

• Examples:
– The number of clusters (1) 
– The degree of a polynomial to fit a curve to data (1)
– Polynomials versus other basis functions such as Fourier (2)

Model Comparison Difficulties

• Prior densities of different models are typically of different 
dimensionality (leads to expensive integration). 

• Good likelihoods help select models, but constructing them is 
an exacting task.
– Don’t forget about the “negative space”

• A more complex model (e.g., more objects in a scene) explains 
more data, but it also proposes more data where there is none. 

• Missing data must be penalized! 

• Good priors over different model classes are often not obvious

Solutions (penalize complexity)

• Typical approach is to focus on the balance between fitting 
accuracy, and model complexity using various penalties.



Solutions (penalize complexity)

• Typical approach is to focus on the balance between fitting 
accuracy, and model complexity using various penalties.

• AIC (An information criterion, Akaike, 74)  

Replace log likelihood, log p(D|!)( ),  with log p(D|!)( ) "M
where M  is the number of adjustable parameters.

Solutions (penalize complexity)

• Typical approach is to focus on the balance between fitting 
accuracy, and model complexity using various penalties.

• BIC (Bayesian information criterion) 
Replace log likelihood, log p(D|!)( ),  with log p(D|!)( ) " 1

2
M log(N )

where M  is the number of adjustable parameters, N is the number
of data points. This is the usual approximation. See Bishop, page 
216-217 for a more complicated version.  

Often also called minimum discription length (MDL)

The dependency on N may seem confusing. Note that the likelihood typically 
depends on N (often N is an exponent), but the formula above does not expose this. 

Solutions (penalize complexity)

• Typical approach is to focus on the balance between fitting 
accuracy, and model complexity using various penalties.

• DIC (Deviation information criterion)
– Details omitted (see Google)
– Slightly more complex, but easier to compute using MCMC sampling
– Still relies on strong assumptions (distribution is approximately 

multivariate normal)

Solutions (likelihood function)

• Incorrect complex models may predict lots of data where 
there is none

• Solution is to model missing data
• Example --- finding asteroids from detections amidst noise

– Predicting more asteroids explains more data, but we expect to see 
detections for them most of the time. 

– Good modeling the probability of noise detections and probability 
of missing detections has a greater affect on the posterior than a 
prior (necessarily not very strong) on the number of asteroids.     



Solutions (integrating parameter uncertainty)

p D Mi( ) = p D !( ) p ! Mi( )d!
"i

#           (Model evidence)

and we can evaluate p Mi D( )  by Bayes.

The dimension of the space of !  ("i  in the integral) is typically a function of i.

This is argued (Bishop, §3.4) to be a principled way to penalize complex
models because complex models spread their probability mass over greater
support (but thec skeptic asks when or why the amount of penalty is correct). 

Under additional approximations and assumptions, this becomes BIC 
(Bishop, §4.4.1).  

Solutions (integrating parameter uncertainty)

p D Mi( ) = p D !( ) p ! Mi( )d!
"i

#           (Model evidence)

and we can evaluate p Mi D( )  by Bayes.

We can compare two models abilities to explain data by the Bayes factor 

Kij =
p D Mi( )
p D M j( )       (We can augment with factors for the priors p M( )  if known)

Supplementary material on lecture notes page has a link to a 
classic reference on Bayes factors (Kass and Raftery, 95).

Solutions (integrating parameter uncertainty)

Kij =
p D Mi( )
p D M j( )       (Bayes factor)

Rules of thumb for K (from Jeffreys, via WikiPedia) 

Solutions (model averaging)

Recall the predictive distributions

p x | X( ) = p(x |! )p(! | X)d!"

To mitigate uncertainty of different models 

p x X( ) =  p Mi( ) p(x |!i )p(!i | X,Mi )d!#i
"

i
$  

Note the assumption that Mi  influences x through !i  only,
so no conditioning on Mi  in the first factor in the integral. 



• Bayes factors can be used to derive BIC under specific conditions

• Otherwise you will normally need a numeric approximation of 
the integral

•                tells you the probability of observing the data you did 
under a well specified, and possibly flawed model—it is hard to 
know you compared the right alternatives.

•                does not necessarily tell you how well the model will 
predict other data

Comments on Bayes factors, etc. 

p D Mi( )

p D Mi( )

Cross-validation

• Standard way to evaluate models
• Exclude a subset of the data while fitting model
• Compute predictions for the held-out subset.
• Evaluate predictions against actual held-out values

– e.g., distance from truth, or class labels

• If you use k such sets, this is called k-fold cross-validation
• If you leave out 1 data point, it is called leave-one-out. 

Cross-validation (2)

• Cross-validation provides 
– A way to choose models
– A way to measure performance
– A way to measure generalization capacity

• Held out data must be different enough to test the level of 
generality that you want
– Consider degree of validation in a model to predict happiness

1.  How happy are you now given recent data points 
2.  How happy are you now given all data points
3.  How happy are you on day X given data for other days
4.  How happy are you based on model of other people
5.  How happy are you based on other people in other experiments
6.  How happy are you based on modeling people in other cultures 

More on estimation

• If the goal is to provide the model, then we often estimate 
the MAP value for the parameters 

• This assumes that the posterior is nicely behaved 

• An alternative is
to average some
or all (MMSE) of
the posterior.

Maximum a 
posteriori 
(MAP)!

p(! | x)

!



Classification

• Consider that our parameters include a discrete class 
variable, c. 

• Assume no other variables, or that they have been 
marginalized out. 

• Use x for the data. Then the posterior over classes is 

• So, given x, what is the class? 

p c | x( )! p(c)p(x | c)
probability of 
class given x

x

decision 
boundary

Area of intersection under curves gives 
expected value of making a mistake

Classification
Binary case, easy to draw
Two classes, C1 and C2. 
being in one is the same as
not being in the other.

Red shows extra that 
you get wrong with 
different boundary 

Finding a decision boundary is not the 
same as modeling a conditional density.

Classification

Here there are more than two classes, but only two shown. Consider all 
animals, but you are being force to choose between “dog” and “cat”. 



Finding a decision boundary is not the same as
modeling a conditional density.

Working with the boundary might be easier (we don’t care 
about the extra bumps). 

But we loose any indication of whether the point is an outlier. 

In this course we will not cover in detail finding the boundary 
(discriminative method). 

Classification

Classification where the risk (loss) for each class is different.

Example: Risk of a false negative diagnosis is more than that 
for the risk of false positive diagnosis. 

Define a loss function, Lj,k which tells us the loss of 
classifying a category k, as a category, j. 

Example:
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cancer

normal

cancer normal

Decision makingBishop §1.5

Now the classification boundaries for x are based on the loss, 
not just the probability. 

You choice of the class, j, for x is the lowest  expected loss.

This is found by:

j
argmin Lk , j

k
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Decision making

Example to illustrate that the formula is sensible.

Suppose that at a given x*, we have
p C1 | x *( ) = 0.3 p C2 | x *( ) = 0.2 p C3 | x *( ) = 0.5

Evaluate the assignment of x* under loss functions

LA =
0 1 1
1 0 1
1 1 0
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        LB =
0 1 1

10 0 10
1 1 0
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Decision making



p C1 | x*( ) = 0.3 p C2 | x*( ) = 0.2 p C3 | x*( ) = 0.5

For the first example (loss is misclassifcation rate) 

  LB =
0 1 1
1 0 1
1 1 0
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Note that loss is defined for misclassifying the column
item as the row item. 

Declaring that x at x* is C1 has expected loss: (0.3)*0 +(0.2)*1+ (0.5)*1=0.7
Declaring that x at x* is C2  has expected loss: (0.3)*1 +(0.2)*0+ (0.5)*1=0.8
Declaring that x at x* is C3  has expected loss: (0.3)*1 +(0.2)*1+ (0.5)*0=0.5

As expected, the minimum loss is for the likeliest class. 

p C1 | x*( ) = 0.3 p C2 | x*( ) = 0.2 p C3 | x*( ) = 0.5

For the second example

  LB =
0 1 1

10 0 10
1 1 0
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Note that loss is defined for misclassifying the column
item as the row item. 

Declaring that x at x* is C1 has expected loss: (0.3)*0 +(0.2)*10+ (0.5)*1 = 2.5
Declaring that x at x* is C2  has expected loss: (0.3)*1 +(0.2)*0+ (0.5)*1  = 0.8
Declaring that x at x* is C3  has expected loss: (0.3)*1 +(0.2)*10+ (0.5)*0 = 2.3

Now the heavy penalty for missing C2  leads to C2  being the best answer.
(Note that C2  was the worst answer with the previous loss). 

Graphical Models

Reference for much of the next topic is Chapter 8 of Bishop

Available on-line
http://research.microsoft.com/~cmbishop/PRML

(Linked from course page).

Graphical Models

• Graphical representation of statistical models
• Nodes

– Random variables (or groups of them)
• Edges 

– Probabilistic relationships between nodes



Graphical Models

• Various kinds
– Directed (Bayesian networks)
– Undirected (e.g., Markov random field)
– Factor graphs (different representation, applicable to both)

x1

x2 x3

x4 x5

x6 x7

A

C

B

D

x1 x2 x3

fa fb fc fd

Directed Graphical Models

• Nodes represent random variables
• Edges between nodes have directed links
• No cycles

a

b

c

Directed Graphical Models

• Nodes represent random variables
• Edges between nodes have directed links
• No cycles
• The graph represents a factorization of the joint probability 

of all the random variables represented by the nodes.
– An arrow from one node (a) to another one (b) means that 

the second node (b) is conditioned on the first (a).
– In other words, if you have information about (a), then you 

have information about (b).
– Thus the arrows tell you about information flow. 

a

b

Directed Graphical Models

a

b

 

Here we have two nodes, a and b.

So this is a representation of the joint distribution p a , b( ).
  
In particular, it is equivalent to writing

p a , b( )!=! p b |!a( )! p a( )

Ancestral sampling version of the story:
         To sample from!!p a , b( )  
                 First sample !a from  p a( )
                 Then sample !b from p b |! !a( )



Directed Graphical Models

• A story of three random variables .... a, b, and c. 

• General model is p(a,b,c)      (understand this!) 

• What are possible relationships of a, b, and c?
– Independence:  p(a,b,c)=p(a)p(b)p(c)
– Some structure: e.g., p(a,b,c)=p(a)p(b|a)p(c|a)
– Arbitrary relationship 

p(a,b,c) = p(a)p(b)p(c)

a
b

c

p(a,b,c) = p(a)p(b|a)p(c|a)

a
b

c

p(a,b,c) = p(a)p(b | a)p(c | a,b)

p(a,b,c) = p(b)p(c | b)p(a | c,b)

• • •

p(a,b,c) with no identified independence



p(a,b,c) = p(a)p(b|a)p(c|a,b)

a

b

c

Note that the graph is fully connected 

a

b

c

Note that the graph is fully connected 

p(a,b,c,d) = p(d!|!a,b,c) p(a,b,c)

d

x1

x2 x3

x4 x5

x6 x7

Another example (§8.2 in Bishop)

What is the algebraic form?  

D = x1, x2 , x3,!...!,!xN{ }

p D,!µ( ) = p µ( ) p xn | µ( )
n=1

N

!

where 

p xn | µ( ) = ! xn | µ;" 2( )

Univariate Gaussian with known variance (§8.2 in Bishop)



µ

x1 xN

µ

xn
N

More compact notation 
(plate representation)

Univariate Gaussian with known variance (§8.2 in Bishop) Deterministic parameters

Our univariate Gaussian has 
some known parameters: the 
variance and the prior on the 
mean. 

If we wish to illustrate them, we 
use a small filled in circle. 

µ

xn
N

! 2

µ0 ,! 0
2

Observed variables

We indicate observed variables by shading them

Alternatively, this indicates conditioning

Observed variables

Example: Inferring the mean of the univariate 

µ

xn
N

! 2

µ0 ,! 0
2



Back to three variables

What are the possible Bayes nets with three variables? 

Three interesting cases

For each case, consider two questions:  
1) Is  a ! b  ?
2)   Is  a ! b  | c   ?     (i.e. c is observed)

c

a b

c

a b

a c b

c

a b

Case one 

Is  a ! b  ?

c

a b

Case one where c is observed

a ! b | c

p a,b,c( ) = p(c)p a c( ) p b c( )     (what the graph represents in general)

p a,b c( ) = p a c( ) p b c( )            (with c observed)

This is the definition of a ! b c



c

a b

Case one (tail-to-tail) summary

a ! b | c

Tail-to-tail case
     With no conditioning, no independence
     With conditioning, we have independence 

c

a b

a ! b

a c b

Case two

The graph represents  p a,b,c( ) = p a( ) p c a( ) p b c( )

Is  a ! b  ?

a c b

Case two where c is observed

Is  a ! b | c    ? a c b

Case two (head-to-tail) summary

a ! b | c

Head-to-tail case
     With no conditioning, no independence
     With conditioning, we have independence 

a c b

a ! b

(Same as case one)



c

a b

Case three

Is  a ! b  ?

Example: 
    c == “strange noises at night”
    a == “burglar in the house”
    b == “deer in the back yard”

c

a b

Case three with c observed

Recall our example: 
    c == “strange noises at night”
    a == “burglar in the house”
    b == “deer in the back yard”

Is  a ! b | c    ?

Case three (head-to-head) summary

a ! b | c

Head-to-head case (different than the other two)
     With no conditioning, we have independence
     With conditioning, we do not have independence

If you are having trouble with “explaining away”, please study 
Bishop, chapter 8, pages 378-379 (on-line). 

a ! bc

a b

c

a b

Three random variables summary

In cases one and two, a and b were not independent until the 
observation of c “blocked” the (connection) path from a to b. 

(From Koller and Friedman, a path that is not blocked is “active”)

In case three, if c is not observed, the path is blocked. Observing c 
made the connection (path) active.  



d-Separation (Pearl, 88)

Generalizes the examples we have been studying.

Consider non-overlapping subsets A, B, C of nodes of a graph. 

Consider all paths from nodes in A to nodes in B.

A path is blocked if either:
a) The arrows meet either tail-to-tail or head-to-tail at a node in C.
b) The arrows meet head-to-head at some node that is not in C, nor 
    are any of its descendants in C. 

If all paths are blocked, then A and B are independent given C. 

“d” stands for 
“directed”

f

e b

a

c

d-Separation (example one)

Does this graph encode A ! B C !?

(A={a}, B={b}, and C={c})

f

e b

a

c

d-Separation (example two)

Does this graph encode A ! B F !?

Grounded example of a Bayesian Network
From Kollar and Friedman

BClancy

GSelma

GJackie

BJackie

GMarge

GBart

GHomer

GClancy

GLisa

BBart

GMaggie

BHomer

BLisa BMaggie

BSelmaBMarge

G is genotype
B is blood type



Bayesian network semantics

• Represents a factorization of p() 
– Random variables are nodes
– Factors are CPD (conditional probability distributions) for child 

given parent (just p(NODE) if no parents). 

•  
– Notice no mention of factorization

Equivalent semantic specification (Proof is in K&F, ch. 3)

For each Xi  : Xi ! NonDescendents Xi( )! !Parents Xi( )

Conditional independence in distributions and graphs

Let  I P( )  be the set of independence assertions of the form X ! Y Z( )
that are true for a distribution P. 

Let  I G( )  be the set of independence assertions represented by
a DAG, G.

G is an I-map for P if I(G)!  I P( )

In other words, all independance represented in G are true. 
(There could be some more in P that G does not reveal).

A few notes on notation and independence

We sometimes write A ! B"( )  for  A ! B

Also, we write  A ! B,C X( )  for A ! B X( )  and A ! C X( )

Recall that A ! B C( )  means that P A B,C( ) = P A C( )

This generalizes to:

A ! B ..., C, ...( )# P A ...!,B, C, ...( ) = P A ..., C,!...( )

Example going from I-map to a factorization

For P(I ,D,G,L,S),  the  I Graph( )  tells us 

D ! I "( ) D ! I S( ) L ! I ,D,S G( ) G ! S I ,D( ) S ! D,G,L I( )
(Note that this is not necessarily all relationships that we can extract) 

Difficulty Intelligence

SATGrade

Letter

From Kollar and Friedman

Recall one version of  DAG semantics is 

Xi ! NonDescendents Xi( )! !Parents Xi( )



Difficulty Intelligence

SATGrade

Letter

We can write the joint distribution as conditioning on non-descendents if 
we maintain a sensible "lexigraphical order where parents occur before children.

P I ,D,G,L,S( ) = P I( )P D I( )P G I ,D( )P L I ,D,G( )P S I ,D,G,L( )

This means that for each factor, all variables conditioned on are either
the parents, or non-descendents. 

This means that for each factor, 
we may have rule that gets rid
of some non-descendents. 

Example going from I-map to a factorization

P I ,D,G,L,S( ) = P I( )P D I( )P G I ,D( )P L I ,D,G( )P S I ,D,G,L( )
D ! I "( )# P D I( ) = P D( )
L ! I ,D,S G( )# P L I ,D,G( ) = P L G( )
S ! D,G,L I( )# P S I ,D,G,L( ) = P S I( )

So,  P I ,D,G,L,S( ) = P I( )P D( )P G I ,D( )P L G( )P S I( )
Difficulty Intelligence

SATGrade

Letter

Summary on the equivalence of the two 
interpretations of directed graphical models

Factorization semantics
Factors are p(node | parents)
 

Abstract semantics
  

These are equivalent
Proof of one direction by the one example just completed.

Xi ! NonDescendents Xi( )! !Parents Xi( )

Interesting questions

Chain rule says yes 

Case study of three nodes says no 

TBA

• Does every probability distribution have a corresponding 
Bayesian network?

• Given the independence structure of a probability distribution, 
and a graph that captures them all (I(G)=I(P), is the 
corresponding graph unique (ignoring isomorphisms)? 

• Do our graphs faithfully capture the independence structure of 
our distributions? 



Back to case one

a c b

• Let a=“smokes”, c=“high blood pressure”, b=“stroke”
• p(c|a) tells you probability of having high blood pressure if 

you smoke (for some definition of each).  
 

Can we distinguish case two from case one?
c

a b

• Let a=“smokes”, c=“high blood pressure”, b=“stroke”
• p(a|c) tells you probability of being a smoker if you have 

high blood pressure (for some definition of each).  
 

Can we distinguish case two from case one?
c

a b

• Let a=“smokes”, b=“high blood pressure”, c=“stroke”
• p(a|c) tells you probability of being a smoker if you have 

high blood pressure (for some definition of each).  
• Data for estimating p(c|a) in first case, and p(a|c) in second 

case cannot tell you which model you should prefer.  
- “Correlation is not causation”

• Causality implied by our generative process is about the 
statistics of the data, not physical causality. 

More on causality

• References
– Kollar and Friedman, Chapter 21 which starts on page 1009! 
– Classic book by Pearl, Causality: Models, Reasoning, and Inference, 2000

• A version is available on-line (bayes.cs.ucla.edu/BOOK-99/book-toc.html)



More on causality

• We have been focussed on the joint distribution which is adequate 
(arguably optimal) for answering the queries we have studied

• In particular, we know how distributions over unknowns change 
due to evidence

• For many problems (e.g., computer vision and much of machine 
learning) this is sufficient
– Either causes are obvious or not relevant

More on causality

• Two correlated variables can have multiple equivalent graphs 
hinting at different causal stories able to provide the same joint.
– A causes B
– B causes A
– C causes both A and B
– A and B cause C (and A and B are correlated by explaining away)

• Given a choice, we prefer the Bayes net that also represents our 
causal theory (if we have one)
– More natural, easier to understand
– Helps tell you whether observed statistics are consistent with your theory

• (Covered briefly next) 

Intervention

• Two Bayes nets that give the same joint distribution can differ in 
what they say about an intervention.

• We represent an intervention, x, as setting some subset of the 
variables, X, to the value, x, denoted by do(X=x). 
– Example 1: Creating an experimental group that will not smoke
– Example 2: Setting your grade to A by hacking into a computer

• On the surface, this might look like conditioning on X, but it is 
different --- the graph needs to change also
– We need to “mutilate” the graph

Representing Intervention

• Example one (students and grades, again)
– Does observing grade change your belief about SAT?

Difficulty Intelligence

SATGrade

Letter



Representing Intervention

• Example one (students and grades, again)
– Does observing grade change your belief about SAT?

• Now, suppose we intervene on the Grade random variable
– E.G., we fix it by hacking into the grade computer
– Now does observing grade change your belief about SAT?

Difficulty Intelligence

SATGrade

Letter

Representing Intervention

• The intervention not only conditions on the variable, it cuts 
the links that influence it. This is the mutilated graph. 

Difficulty Intelligence

SATGrade

Letter

Representing Intervention

• Another example --- the student from before with a link 
between SAT and letter. Now we expect that the 
intervention does not entirely explain the letter, but that the 
influence of grade is direct (only). 

Difficulty Intelligence

SATGrade

Letter

Difficulty Intelligence

SATGrade

Letter

Representing Intervention

• Another example --- from Pearl, 2000.
– Consider the intervention of turning the sprinkler “on”  



Representing Intervention

• Representation of the intervention of turning the sprinkler on.

Can graphs capture all independence?

• Do our graphs faithfully capture the independence structure 
of our distributions?

• Recall that

•       

G is an I-map for P if I G( )!  I P( )

In other words, all independence represented in G are true. 
(There could be more independence in P that G does not reveal).

Hence we are asking if  I G( ) ! I P( )
Since I G( ) " I P( )  this amounts to asking if I P( ) " I G( )

Perfection

G is an P-map for P if I G( ) !  I P( )          (perfect map)

In other words, all independence represented in G are true, and
there are no other independence relations.  

Do all distributions have perfect maps?

A

C

B

D

Perfection may not be attainable

Note no arrows, but a link still 
means some probabilistic relation.

The “misconception” example in K&F (pp. 
82-3), where Alice, Bob, Charles, and 
Debbie study in pairs shown, but A and B 
never work together, nor do C and D. 



A

C

B

D

Perfection may not be attainable

Note no arrows, but a link still 
means some probabilistic relation.

Suppose that we have

A ! B C,D( )
and 

C ! D A,B( )

Now, draw the Bayes net
(have fun!). 

• Does every probability distribution have a corresponding 
Bayesian network?

• Given the independence structure of a probability distribution, 
and a graph that captures them all (I(G)=I(P), is the 
corresponding graph unique (ignoring isomorphisms)? 

• Do our graphs always faithfully capture the independence 
structure of our distributions? 

Interesting questions

Chain rule says yes 

Case study of three nodes says no 

Misconception example says no

Undirected graphical models
• Also referred to as

– Markov Networks
– Markov Random Fields

• Nodes represent (groups of) random variables

• Edges represent probabilistic relations between connected 
nodes.

• We have already seen an example suggestive that arrows 
are not always helpful. 

Undirected graphical models

• The analog to d-separation is simper
– Disjoint sets A and B are independent conditioned on C if all paths 

from nodes in A to nodes in B pass through C.

A

C
B

Here  A ! B C( )   for
all probability distributions
represented by this graph. 



Markov Blanket
• The Markov blanket of a node, X, is a particular set of 

(nearby) nodes B where  
• For directed graphs the Markov blanket is the parents, 

children, and co-parents of X. 
• For undirected graphs this is simply the set of nodes 

connected to X. 

X ! Xi B   for all Xi

xiX X

Undirected graphical models

• Bayes nets where nodes only have one parent are easily 
converted to undirected graphs without changing links. 

• (Discussed in more detail soon)

• Intuitively, for any two nodes, xi and xj, not connected by a 
link, 

• So,

• This suggests that an appropriate factorization should not 
have factors with these two nodes together.

• Direct links imply that we have a relation, and so we cannot 
put directly linked nodes into the same factor. 

• A group of nodes that are all connected cannot be factored 
by the above rule. 

Semantics of undirected graphical models

xi ! x j x i, j{ }.

 
p …, xi ,…, x j ,…( ) = p xi x i, j{ }( ) p xj x i, j{ }( ) p x i, j{ }( )

Draw this on the board! 

Semantics of undirected graphical models
• So, we add nodes into factors, provided that they are all 

connected. 

• This leads to describing the semantics in terms of maximal 
cliques.
– A clique is fully connected subset of nodes from the graph
– A maximal clique is a clique where no node in the graph can be 

added to it without it ceasing to be a clique. 

x1

x2

x3

x4

All parwise linked nodes are cliques. For example
x1, x2{ }  is a clique (green). However, it is not a

maximal clique. x2 , x3, x4{ }  is a maximal clique 
(blue). If we add another node (only x1  is left) we 
no longer have a clique. 

Draw this on the board! 

Examples on the board! 



Semantics of undirected graphical models (2)

Let C index maximal cliques. Then

p x( ) = 1
Z

! C xC( )
c
"

where Z !=! ! C xC( )
c
"

x
#  (or ! C xC( )

c
"

x
$ ) is the partition function,

and ! C xC( )  are the clique potentials.

If xi  and x jj  do not share an edge, then they do not share cliques.

So p x( ) = 1
Z

! C xC( )
c i( )
" ! C xC( )

c j( )
" ! C xC( )

c%c i( )&c j( )
"

Draw on the board.

Misconception example

p A,B,C,D( ) !" A,C( )" C,B( )" B,D( )" D,A( )
A

C

B

D Intuitively we have A ! B C,D( )    and C ! D A,B( )   because
if C,D are fixed, then factors for A and B have no shared variables.

However, let us derive a result to confirm this 

p X,Y ,Z( ) =! X,Z( )! Y ,Z( ) " X # Y Z

p X Z( ) p Y Z( ) =
! X,Z( )! Y ,Z( )

X
$

! X,Z( )! Y ,Z( )
X ,Y
$

! X,Z( )! Y ,Z( )
Y
$

! X,Z( )! Y ,Z( )
X ,Y
$

=
! Y ,Z( ) ! X,Z( )

X
$

! X,Z( )
X
$ ! Y ,Z( )

Y
$

! X,Z( ) ! Y ,Z( )
Y
$

! X,Z( )
X
$ ! Y ,Z( )

Y
$

=
! Y ,Z( ) ! X,Z( )

X
$

! X,Z( )
X
$%&'

(
)*

! Y ,Z( )
Y
$%&'

(
)*

! X,Z( ) ! Y ,Z( )
Y
$

! X,Z( )
X
$%&'

(
)*

! Y ,Z( )
Y
$%&'

(
)*

=
! Y ,Z( )
! Y ,Z( )

Y
$%&'

(
)*

! X,Z( )
! X,Z( )

X
$%&'

(
)*

        (canceling green and red pairs)

=
! Y ,Z( )! X,Z( )
! Y ,Z( )! X,Z( )

X ,Y
$

=
p X,Y ,Z( )
p Z( )

(algebra for !,  other direction is easier)
From directed to undirected

• Easy case (all nodes have at most one parent).

• Example:

• Becomes: 

x1 x2 xN−1 xN

x1 x2 xN−1 xN



From directed to undirected

• Convert:

• To:

• Inspection suggests: 

x1 x2 xN−1 xN

x1 x2 xN−1 xN

p x( ) = p x1( ) p x2 x1( ) p x3 x2( )!!! ! !!! p xN"1 xN"2( ) p xN xN"1( )

p x( ) = ! x1, x2( )! x2 , x3( )!!!...!!!! xN"2 , xN"1( )! xN"1, xN( )

 

! x1, x2( ) = p x1( ) p x2 x1( )
! x2 , x3( ) = p x3 x2( )
!!!!!!!!!!!!!!!i!i!i!

! xN"2 , xN"1( ) = p xN"1 xN"2( )
! xN"1, xN( ) = p xN xN"1( )

x1 x3

x4

x2

From directed to undirected

• Harder case (some nodes have multiple parents).

• Example:

• Because this implies conditioning on three variables, the 
potentials for the clique are a function of four variables.

• These nodes need to be part of a clique (but they are not).

From directed to undirected

• Solution is to marry the parents.

• This makes the graph “moral”.

• Note that moralization looses conditional independence 
information. 

 
x1 x3

x4

x2

x1 x3

x4

x2

From directed to undirected

• Complete algorithm
- Make the graph moral.
- Initialize each maximal clique potential to one. 
- Multiply each factor in p() into an appropriate clique 

potential.
- Note that Z=1

 



Example of converting directed to undirected

Difficulty Intelligence

SATGrade

Letter

P I ,D,G,L,S( ) = P I( )P D( )P G I ,D( )P L G( )P S I( )
P =! D,G, I( )! S, I( )! L,G( )
! D,G, I( ) = P I( )P D( )P G I ,D( ) ! S, I( ) = P S I( ) ! L,G( ) = P L G( )
! D,G, I( ) = P D( )P G I ,D( ) ! S, I( ) = P I( )P S I( ) ! L,G( ) = P L G( )

Difficulty Intelligence

SATGrade

Letter

Energy function encoding

We will assume that all ! C xC( ) > 0.

In general, we leave the semantics of ! C xC( )  open, but for undirected  
graphs that come from directed graphs where each node has one parent, 
the semantics follows that for the directed graphs (as we have just done). 

Since ! C xC( ) > 0 we will often write ! C xC( ) = exp "E xC( ){ }  where E()

is the energy function.

Energy function encoding (2)

Writing ! C xC( ) = exp "E xC( ){ }  means that

p x( ) = 1
Z

! x
c
" xC( )

= 1
Z

exp
c
" #E xC( ){ }

= 1
Z
exp #E xC( )

c
$%&

'

(
)
*

= 1
Z
exp #E(x){ } Where   E x( ) = E xC( )

c
!

Example of a Markov random field

• Consider a binary image (pixels are either black or white).

• Pixels are represented by {-1,1}.

• Suppose the image have is an underlying accurate image 
where some of the bits have been flipped by a noise process.



Example of a Markov random field (2)

• Undirected graphical model.

xi

yi

Example of a Markov random field (2)

• For low energy (high probability) 

xi

yi

xi = yi    most of the time (set by noise level)
xi = x j   most of the time if i and j are neighbours.
xi          could be biased to have one value or the other.

A simple energy function for the entire grid is:

E x,y( ) = h xi! "# xi
i, j
! x j "$ xi

i
! yy

Because values are 1 and -1, being 
the same makes the sums bigger, 
being different makes them smaller.

Example of a Markov random field (3)

 

xi = yi    most of the time (set by noise level)
xi = x j   most of the time if i and j are neighbours.
xi          could be biased to have one value or the other.

For each xi , yi{ }maximum clique, E xi , yi( ) = !"ixi iyi    (" > 0)
(high probablity corresponds to low energy)

For unique xi , x j#neighbor i( ){ }max clique, E xi , x j( ) = !$ixi ix j    ($ > 0)

For a subset of the above cliques, one for each i, add in a term hixi .

Additional details 
glossed over in class 
provided in notes.

Example of a Markov random field (4)
• Notice in the previous analysis we assigned arguably symmetric 

cliques different potentials 
- Left boundary xi might get different potentials than right 

boundary xi.
- Some xij get a factor for the bias, other do not.

• Notice that exact assignment to clique potentials may not matter 
• We can jump readily quickly to the overall picture, hence:

xi

yiE x,y( ) = h xi! "# xi
i, j
! x j "$ xi

i
! yy



Example of a Markov random field (3)

• Finding a low energy (high probability) state using ICM 
(iterated conditional modes).
- Initialize xi to yi.
- For each i, change xi if energy decreases.
- Repeat until energy no longer can be decreased.

• Converges to a local minimum because we only decrease.

resultwith noiseoriginal

P
UD

C

A B

A

C

B

D

Directed and undirected perfect maps

D is subset of distributions in P that are perfectly represented 
by directed graphs; similarly U for undirected graphs.

Here we are in the first few 
slides of lecture 13. 


