Inference on graphs

- Given a graph and its conditionals or potentials compute
$p(\theta \mid e) \quad$ (particular θ and e, marginalizing out other variables)
$p(X) \quad$ (particular event, marginalizing out other variables)
$\operatorname{argmax} p(\theta \mid e) \quad$ (particular θ and e; marginalizing other variables)
$\operatorname{argmax} p\left(\theta, \theta_{N}, e_{N} \mid e\right) \quad$ (all variables, will nuisance / unobserved)

Inference on graphs

- Simplest example (Bayes’ rule)
- (a) model
- (b) illustrates observed
(c) inference reverses the arrow
(a)

(b)

(c)
- Computationally

$$
p(x \mid y)=\frac{p(y \mid x) p(x)}{\sum_{x^{\prime}} p\left(y \mid x^{\prime}\right) p\left(x^{\prime}\right)}
$$

Marginals on a chain

Recall

$p(\mathbf{x})=p\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right) p\left(x_{3} \mid x_{2}\right) \cdots p\left(x_{N-1} \mid x_{N-2}\right) p\left(x_{N} \mid x_{N-1}\right)$

$p(\mathbf{x})=\psi_{1,2}\left(x_{1}, x_{2}\right) \psi_{2,3}\left(x_{2}, x_{3}\right) \quad \ldots \quad \psi_{N-2, N-1}\left(x_{N-2}, x_{N-1}\right) \psi_{N-1, N}\left(x_{N-1}, x_{N}\right)$

Assume N discrete variables, with K values each.

Compute the marginal of a node in the middle, $p\left(x_{n}\right)$

Marginals on a chain

$p(\mathbf{x})=\psi_{1,2}\left(x_{1}, x_{2}\right) \psi_{2,3}\left(x_{2}, x_{3}\right) \quad \ldots \quad \psi_{N-2, N-1}\left(x_{N-2}, x_{N-1}\right) \psi_{N-1, N}\left(x_{N-1}, x_{N}\right)$

Direct calculation of $p\left(x_{n}\right)$
$p\left(x_{n}\right)=\sum_{x_{1}} \sum_{x_{2}} \ldots \sum_{x_{n-1}} \sum_{x_{n+1}} \ldots \sum_{x_{N-1}} \sum_{x_{N}} p(\mathbf{x})$
Computational complexity is $\mathrm{O}\left(\mathrm{K}^{\mathrm{N}}\right)$. Way too slow!

Computing marginals on a chain efficiently

$p(\mathbf{x})=\psi_{1,2}\left(x_{1}, x_{2}\right) \psi_{2,3}\left(x_{2}, x_{3}\right) \quad \ldots \quad \psi_{N-2, N-1}\left(x_{N-2}, x_{N-1}\right) \psi_{N-1, N}\left(x_{N-1}, x_{N}\right)$

Main idea is to rearrange terms to exploit conditional independence.

Back to
marginals on a chain

$$
\begin{aligned}
p\left(x_{n}\right) & \left.=\sum_{x_{1}} \sum_{x_{2}} \ldots \sum_{x_{n-1}} \sum_{x_{n+1}} \ldots \sum_{x_{N-1}} \sum_{x_{N}} \psi_{1,2}\left(x_{1}, x_{2}\right) \ldots \psi_{f_{L}\left(x_{1}, x_{1}, \ldots, n\right.} x_{n}\right) \\
& \left.=\sum_{x_{1}} \sum_{x_{2}} \ldots x_{n-1}, x_{n}\right) \sum_{x_{n-1}} \sum_{x_{n+1}} \ldots \sum_{x_{N-1}\left(x_{n}, x_{n+1}, \ldots, x_{N}\right)} \sum_{x_{N}} f_{L}\left(x_{1}, x_{1}, \ldots, x_{n}\right) f_{R}\left(x_{n}, x_{n+1}, \ldots, x_{N}\right) \\
& =\left(\sum_{x_{1}} \sum_{x_{2}} \ldots \sum_{x_{n-1}} f_{L}\left(x_{1}, x_{1}, \ldots, x_{n}\right)\right)\left(\sum_{x_{n+1}} \ldots \sum_{x_{n-1}} \sum_{x_{N}} f_{R}\left(x_{n}, x_{n+1}, \ldots, x_{N}\right)\right) \\
& =\left(\sum_{x_{1}} \sum_{x_{2}} \ldots \sum_{x_{n-1}} \prod_{i=1}^{n-1} \psi_{i, i+1}\left(x_{i}, x_{i+1}\right)\right)\left(\sum_{x_{n+1}} \ldots \sum_{x_{N-1}} \sum_{x_{N}} \prod_{i=n}^{N-1} \psi_{i, i+1}\left(x_{i}, x_{i+1}\right)\right) \\
& =\left(\sum_{x_{n-1}} \sum_{x_{n-2}} \ldots \sum_{x_{1}} \prod_{i=1}^{n-1} \psi_{n-i, n-i+1}\left(x_{n-i}, x_{n-i+1}\right)\right)\left(\sum_{x_{n+1}} \ldots \sum_{x_{N-1}} \sum_{x_{N}} \prod_{i=n}^{N-1} \psi_{i, i+1}\left(x_{i}, x_{i+1}\right)\right)
\end{aligned}
$$

Fancy formulas from algebra

$$
\sum_{\substack{x_{1}, x_{2}, \ldots, x_{N} \\ \text { all values of each }}} f\left(x_{1}, x_{2}, \ldots, x_{N}\right)=\underbrace{\sum_{x_{1}} \sum_{x_{2}} \ldots \sum_{x_{N}}}_{\text {any order you like }} f\left(x_{1}, x_{2}, \ldots, x_{N}\right)
$$

(essentially a definition)

$$
\left(\sum a_{i}\right)\left(\sum b_{j}\right)=\sum \sum a_{i} b_{j}
$$

$$
\begin{aligned}
& p\left(x_{n}\right)=\left(\sum_{x_{n-1}} \sum_{x_{n-2}} \ldots \sum_{x_{1}} \prod_{i=1}^{n-1} \psi_{n-i, n-i+1}\left(x_{n-i}, x_{n-i+1}\right)\right)\left(\sum_{x_{n+1}} \ldots \sum_{x_{N-1}} \sum_{x_{N}} \prod_{i=n}^{N-1} \psi_{i, i+1}\left(x_{i}, x_{i+1}\right)\right) \\
& \prod_{i=1}^{n-1} \psi_{n-i, n-i+1}\left(x_{n-i}, x_{n-i+1}\right)=\psi_{n-1, n}\left(x_{n-1}, x_{n}\right) \psi_{n-2, n-1}\left(x_{n-2}, x_{n-2}\right) \ldots \psi_{2,3}\left(x_{2}, x_{3}\right) \psi_{1,2}\left(x_{1}, x_{2}\right)
\end{aligned}
$$

More warmup

$$
\sum_{x_{2}} \sum_{x_{1}} \underbrace{\psi\left(x_{2}, x_{3}\right)}_{\begin{array}{c}
\text { No dependency on } x_{1} \\
\text { hence we can move } \\
\text { factor outside sum } \\
\text { over } x_{1}
\end{array}} \psi\left(x_{1}, x_{2}\right)=\sum_{x_{2}} \psi\left(x_{2}, x_{3}\right) \underbrace{\sum_{x_{1}} \psi\left(x_{1}, x_{2}\right)}_{\begin{array}{c}
\text { Vector of size over the } \\
\text { components of } x_{2}
\end{array}}
$$

(Recall the distibutive law: $b a+c a=a(b+c)$)

For example, $\mathrm{K}=2$, the first component of the sum, x_{3}^{1}, is:

$$
\begin{aligned}
& \sum_{x_{2}} \sum_{x_{1}} \psi\left(x_{2}, x_{3}^{1}\right) \psi\left(x_{1}, x_{2}\right) \\
&=\psi\left(x_{2}^{1}, x_{3}^{1}\right) \psi\left(x_{1}^{1}, x_{2}^{1}\right)+\psi\left(x_{2}^{1}, x_{3}^{1}\right) \psi\left(x_{1}^{2}, x_{2}^{1}\right)+\psi\left(x_{2}^{2}, x_{3}^{1}\right) \psi\left(x_{1}^{1}, x_{2}^{2}\right)+\psi\left(x_{2}^{2}, x_{3}^{1}\right) \psi\left(x_{1}^{2}, x_{2}^{2}\right) \\
&=\psi\left(x_{2}^{1}, x_{3}^{1}\right) \cdot\left(\psi\left(x_{1}^{1}, x_{2}^{1}\right)+\psi\left(x_{1}^{2}, x_{2}^{1}\right)\right)+\psi\left(x_{2}^{2}, x_{3}^{1}\right) \cdot\left(\psi\left(x_{1}^{1}, x_{2}^{2}\right)+\psi\left(x_{1}^{2}, x_{2}^{2}\right)\right) \\
&=\psi\left(x_{2}^{1}, x_{3}^{1}\right)\left(\sum_{\left\{x_{1}^{1}\right\}} \psi\left(x_{1}^{i}, x_{2}^{1}\right)\right)+\psi\left(x_{2}^{2}, x_{3}^{1}\right)\left(\sum_{\left\{x_{1}^{1}\right\}} \psi\left(x_{1}^{i}, x_{2}^{1}\right)\right) \\
&=\sum_{\left\{x_{2}^{1}\right\}} \psi\left(x_{2}^{i}, x_{3}^{1}\right) \sum_{\left\{x_{1}^{1}\right\}} \psi\left(x_{1}^{i}, x_{2}^{1}\right)
\end{aligned}
$$

$$
\begin{aligned}
& p\left(x_{n}\right)=\left(\sum_{x_{n-1}} \sum_{x_{n-2}} \ldots \sum_{x_{1}} \prod_{i=1}^{n-1} \psi_{n-i, n-i+1}\left(x_{n-i}, x_{n-i+1}\right)\right)\left(\sum_{x_{n+1}} \ldots \sum_{x_{N-1}} \sum_{x_{N}} \prod_{i=n}^{N-1} \psi_{i, i+1}\left(x_{i}, x_{i+1}\right)\right) \\
& \prod_{i=1}^{n-1} \psi_{n-i, n-i+1}\left(x_{n-i}, x_{n-i+1}\right)=\psi_{n-1, n}\left(x_{n-1}, x_{n}\right) \psi_{n-2, n-1}\left(x_{n-2}, x_{n-2}\right) \ldots \psi_{2,3}\left(x_{2}, x_{3}\right) \psi_{1,2}\left(x_{1}, x_{2}\right) \\
& \sum_{x_{n-1}} \sum_{x_{n-2}} \ldots \sum_{x_{1}} \prod_{i=1}^{n-1} \psi_{n-i, n-i+1}\left(x_{n-i}, x_{n-i+1}\right)=\sum_{x_{n-1}} \sum_{x_{n-2}} \ldots \sum_{x_{2}} \prod_{i=1}^{n-2} \psi_{n-i, n-i+1}\left(x_{n-i}, x_{n-i+1}\right)\{\underbrace{\left.\sum_{1,2}\left(x_{1}, x_{2}\right)\right\}}_{\substack{\text { This sas Kelemens, indexed } \\
b x_{1} x_{2}}}
\end{aligned}
$$

$$
p\left(x_{n}\right)=\left(\sum_{x_{n-1}} \sum_{x_{n-2}} \ldots \sum_{x_{1}} \prod_{i=1}^{n-1} \psi_{n-i, n-i+1}\left(x_{n-i}, x_{n-i+1}\right)\right)\left(\sum_{x_{n+1}} \ldots \sum_{x_{N-1}} \sum_{x_{N}} \prod_{i=n}^{N-1} \psi_{i, i+1}\left(x_{i}, x_{i+1}\right)\right)
$$

$$
\prod_{i=1}^{n-1} \psi_{n-i, n-i+1}\left(x_{n-i}, x_{n-i+1}\right)=\psi_{n-1, n}\left(x_{n-1}, x_{n}\right) \psi_{n-2, n-1}\left(x_{n-2}, x_{n-2}\right) \ldots \psi_{2,3}\left(x_{2}, x_{3}\right) \psi_{1,2}\left(x_{1}, x_{2}\right)
$$

$$
\begin{aligned}
\sum_{x_{n-1}} \sum_{x_{n-2}} \ldots \sum_{x_{1}} \prod_{i=1}^{n-1} \psi_{n-i, n-i+1}\left(x_{n-i}, x_{n-i+1}\right) & =\sum_{x_{n-1}} \sum_{x_{n-2}} \ldots \sum_{x_{2}} \prod_{i=1}^{n-2} \psi_{n-i, n-i+1}\left(x_{n-i}, x_{n-i+1}\right)\left\{\sum_{x_{1}} \psi_{1,2}\left(x_{1}, x_{2}\right)\right\} \\
& =\sum_{x_{n-1}} \sum_{x_{n-2}} \ldots \sum_{x_{3}} \prod_{i=1}^{n-3} \psi_{n-i, n-i+1}\left(x_{n-i-1}, x_{n-i}\right)\left\{\sum_{x_{2}} \psi_{2,3}\left(x_{2}, x_{3}\right)\left\{\sum_{x_{1}} \psi_{1,2}\left(x_{1}, x_{2}\right)\right\}\right\} \\
& \cdots \\
& \left.=\left\{\sum_{x_{n-1}} \psi_{n-1, n}\left(x_{n-1}, x_{n}\right) \ldots\left\{\sum_{x_{3}} \psi_{3,4}\left(x_{3}, x_{4}\right)\left\{\sum_{x_{2}} \psi_{2,3}\left(x_{2}, x_{3}\right)\left\{\sum_{x_{1}} \psi_{1,2}\left(x_{1}, x_{2}\right)\right\}\right\}\right\}\right\}\right\}
\end{aligned}
$$

$$
p\left(x_{n}\right)=\left(\sum_{x_{n-1}} \sum_{x_{n-2}} \ldots \sum_{x_{1}} \prod_{i=1}^{n-1} \psi_{n-i, n-i+1}\left(x_{n-i}, x_{n-i+1}\right)\right)\left(\sum_{x_{n+1}} \ldots \sum_{x_{N-1}} \sum_{x_{N}} \prod_{i=n}^{N-1} \psi_{i, i+1}\left(x_{i}, x_{i+1}\right)\right)
$$

where

$$
\left.\sum_{x_{1=1}} \sum_{x=2} \ldots \sum_{x_{1}} \prod_{i=1}^{n-1} \psi_{n-1, n-t+1}\left(x_{n-1}, x_{n-1+1}\right)=\left\{\sum_{x_{3}=1} \psi_{n-1, n}\left(x_{n-1}, x_{n}\right) \ldots\left\{\sum_{x_{3}} \psi_{3,4}\left(x_{3}, x_{4}\right)\left\{\sum_{x_{2}} \psi_{2,3}\left(x_{2}, x_{3}\right)\left\{\sum_{x_{1}} \psi_{1,2}\left(x_{1}, x_{2}\right)\right\}\right\}\right\}\right\}\right\}
$$

and
$\sum_{x_{n+1}} \ldots \sum_{x_{x-1}} \sum_{x_{x}} \prod_{i=n}^{N-1} \psi_{i, t+1}\left(x_{i}, x_{i+1}\right)=\left\{\sum_{x_{n+1}} \psi_{n, n+1}\left(x_{n}, x_{n+1}\right) \ldots\left\{\sum_{x_{N-1}} \psi_{N-2, N-1}\left(x_{N-2}, x_{N-1}\right)\left\{\sum_{x_{N}} \psi_{N-1, N}\left(x_{N-1}, x_{N}\right)\right\}\right\} \ldots\right\}$
(Deriving the right factor is similar to doing
the left one which we did in detail.)

Computational Complexity

Suppose each variable has K values
What is the cost of evaluating the first factor?

The cost for computing the part shown in orange is $\mathrm{O}\left(K^{2}\right)$.

Matrix interpretation (for two variables)

$$
\begin{aligned}
&\left.\sum_{x_{i=1}} \sum_{x_{n-2}} \ldots \sum_{x_{1}} \prod_{i=1}^{n-1} \psi_{n-i, n-i+1}\left(x_{n-i}, x_{n-i+1}\right)=\left\{\sum_{x_{n=1}} \psi_{n-1, n}\left(x_{n-1}, x_{n}\right) \ldots\left\{\sum_{x_{3}} \psi_{3,4}\left(x_{3}, x_{4}\right)\left\{\sum_{x_{2}} \psi_{2,3}\left(x_{2}, x_{3}\right)\left\{\sum_{x_{1}} \psi_{1,2}\left(x_{1}, x_{2}\right)\right\}\right\}\right\}\right\}\right\} \\
& \psi_{i, i+1}\left(x_{i}, x_{i+1}\right) \Leftrightarrow Q_{i+1, i} \quad \text { (note transposition!) } \\
& \sum_{i} \psi_{i, i+1}\left(x_{i}, x_{i+1}\right) \Leftrightarrow \text { sums columns to get a vector } \mathrm{V}_{i+1} \\
& \sum_{x_{i+1}} \psi_{i+1, i+2}\left(x_{i+1}, x_{i+2}\right)\left\{\sum_{x_{i}} \psi_{i, i+1}\left(x_{i}, x_{i+1}\right)\right\} \Leftrightarrow Q_{i+2, i+1} \bullet \mathrm{~V}_{i}
\end{aligned}
$$

Computational Complexity

Suppose each variable has K values
What is the cost of evaluating the first factor?

The cost of the left factor is $\mathrm{O}\left(N \cdot K^{2}\right)$.
The other factor is similar.
We see that the overall cost is $\mathrm{O}\left(N \cdot K^{2}\right)$.
Much better than the naive computation where we had $\mathrm{O}\left(K^{N}\right)$!

Message passing interpretation

Define $\mu_{\alpha}\left(x_{n}\right)$ as a message passed from node x_{n-1} to node x_{n}.
Define $\mu_{b}\left(x_{n}\right)$ as a message passed from node x_{n+1} to node x_{n}.

Passing messages will correspond to the computation of taking input messages, and computing output messages.

Message passing interpretation

$\sum_{x_{n=1}} \sum_{n-2} \ldots \sum_{x_{1}} \prod_{i=1}^{n-1} \psi_{n-i, n-i+1}\left(x_{n-i}, x_{n-i+1}\right)=$

Message passing interpretation

Algorithm
Send a message from x_{I} to x_{n}. Send a message from x_{N} to x_{n}. Element wise multiply messages. Normalize by sum (Z).

Computing all marginals

To compute all marginals, send a message from left to right, and right to left, storing the result.

Now compute any marginal as before.
This way, computing all marginals is only twice as expensive as computing one of them.

The normalization constant is easily computed using any convenient node.

What if a node is observed?

If a node is observed, then we do the obvious. Specifically, we clamp the values of variables to the particular case.

This means that messages flowing into it, do not affect messages flowing out, which are set to the "clamped" value.

Factor Graphs

Suppose $\mathrm{p}(\mathbf{x})$ factorizes as:

$$
p(\mathbf{x})=\prod f\left(x_{s}\right) \quad \text { where } x_{s} \text { are sets of of variables within } \mathbf{x} .
$$

Make a node for each x_{i} as usual.
Now, make a different kind of node for $f($) (e.g., squares).

Draw edges between the factor nodes and the variables in the variable set, s.

Note that the factorization formula means that we can convert both directed and undirected graphs to factor graphs.

Factor Graph Example

Suppose $\mathrm{p}(\mathbf{x})$ factorizes as:

$$
p(\mathbf{x})=\prod_{s} f\left(x_{s}\right)=f_{a}\left(x_{1}, x_{2}\right) f_{b}\left(x_{1}, x_{2}\right) f_{c}\left(x_{2}, x_{3}\right) f_{d}\left(x_{3}\right)
$$

The graph is:

Factor Graph Example (continued)

Suppose $\mathrm{p}(\mathbf{x})$ factorizes as:

$$
p(\mathbf{x})=\prod_{s} f\left(x_{s}\right)=f_{a}\left(x_{1}, x_{2}\right) f_{b}\left(x_{1}, x_{2}\right) f_{c}\left(x_{2}, x_{3}\right) f_{d}\left(x_{3}\right)
$$

This layout emphasizes that factor graphs are bipartite.

Note two factors for the clique for 1 and 2 , suggesting that factor graphs can preserve extra structure compared to undirected graphs.

Factor Graph Example (2)

Factor Graph Example (2)

$$
p(\mathbf{x})=\underbrace{p\left(x_{1}\right)}_{f_{a}} \underbrace{p\left(x_{2}\right)}_{f_{b}} \underbrace{p\left(x_{3} \mid x_{1}, x_{2}\right)}_{f_{c}}
$$

Factor Graph Summary

$p(\mathbf{x})=\prod f\left(x_{s}\right) \quad$ where x_{s} are sets of of variables within \mathbf{x}.

Denote variables by circles

Denote each factor by a square

Draw links between squares and variables in the sets x_{s}

Factor graphs are bipartite

Factor graph for a distribution is not necessarily unique.

Factor graphs conveniently represent the extended message passing needed for inference on trees/polytrees.

Trees/Polytrees

A directed graph is tree if the root node has no parents, others have exactly one parent.

An undirected graph is a tree if there is only one path between any pair of nodes.

A directed graph is a polytree if there is only one path per pair of nodes.

Observations about factor graphs for trees

Any node can be root
Any node with K links splits the graph into K subgraphs which do not share nodes.

If we pass messages from:

1) the leaves to a chosen root;
2) the chosen root to the leaves,
then all messages that can be passed have been passed.

Further, the number of messages in 1 and 2 are the same.

Observations about factor graphs

(x_{3} is the root)

Sum-product algorithm

Generalizes what we did with chains.

Generalizes and simplifies an algorithm introduced as "belief propagation".

As with chains, consider the problem of computing the marginal of a selected node, x_{n}.

$p(\mathbf{x})=F\left(x, X_{A}\right) F\left(x, X_{B}\right) F\left(x, X_{C}\right)$
where each of these three factors are themselves groups of factors over x and the subgraphs.

More explicitly,
$F\left(x, X_{A}\right)=\prod f\left(X_{s}\right) \quad$ with $X_{s} \subseteq\{x\} \cup A$
$F\left(x, X_{B}\right)=\prod f\left(X_{s}\right) \quad$ with $X_{s} \subseteq\{x\} \cup B$
$F\left(x, X_{C}\right)=\prod f\left(X_{s}\right) \quad$ with $X_{s} \subseteq\{x\} \cup C$
$p(x)=\sum_{X \backslash\{x\}} p(\mathbf{x})=\sum_{X \backslash\{x\}} F\left(x, X_{A}\right) F\left(x, X_{B}\right) F\left(x, X_{C}\right)=\left(\sum_{A} F\left(x, X_{A}\right)\right)\left(\sum_{B} F\left(x, X_{B}\right)\right)\left(\sum_{C} F\left(x, X_{C}\right)\right)$
(recall our fancy formula)
$\left(\sum a_{i}\right)\left(\sum b_{j}\right)=\sum \sum a_{i} b_{j}$

Considering the first factor in the product on the previous slide,

$$
\begin{aligned}
\sum_{A} F\left(x, X_{A}\right) & =\sum_{A} f\left(x, x_{A 1}, x_{A 2}\right) F_{A 1}\left(x_{A 1}, A 1\right) F_{A 2}\left(x_{A 2}, A 2\right) \\
& =\sum_{x_{A 1}, x_{A 2}} f\left(x, x_{A 1}, x_{A 2}\right) \sum_{A 1} F_{A 1}\left(x_{A 1}, A 1\right) \sum_{A 2} F_{A 2}\left(x_{A 2}, A 2\right)
\end{aligned}
$$

$$
\begin{aligned}
\sum_{A} F\left(x, X_{A}\right) & =\sum_{A} f\left(x, x_{A 1}, x_{A 2}\right) F_{A 1}\left(x_{A 1}, A 1\right) F_{A 2}\left(x_{A 2}, A 2\right) \\
& =\sum_{x_{A 1} x_{A 2}} f\left(x, x_{A 1}, x_{A 2}\right) \sum_{A 1} F_{A 1}\left(x_{A 1}, A 1\right) \sum_{A 2} F_{A 2}\left(x_{A 2}, A 2\right)
\end{aligned}
$$

This factor expands to

$$
\sum_{A 1} F_{A 1}\left(x_{A 1}, A 1\right)=\prod_{n e\left(x_{A 1} \mid\right) f_{x A}} F_{A 1, i}\left(x_{A 1}, A 1 i\right)
$$

Sum-product algorithm

We could continue on recursively until we get to the leaf nodes, thereby computing $p(x)$ via recursion.

However, a message passing implementation is simpler, and is better suited to computing all marginals at once.

We defined two kinds of messages:

1) From nodes to factors.
2) From factors to nodes.

Sum-product algorithm

We defined two kinds of messages:

1) From factors to nodes.
2) From nodes to factors.

In analogy with chains, factor-to-node messages provide marginal distributions for the node, for a subgraph. (In the chain case, we had the left side and the right side).

In the chain case we did not have factor nodes. This worked because the second kind of message (nodes-to-factor) is just "pass through" or "copy" in the case of only two links. So, we described it as simply passing messages from node to node.

Marginal distribution for a node x

$$
\begin{array}{rlrl}
p(x) & =\sum_{\mathbf{x} / x} \prod_{s \in n(x)} F\left(x, X_{s}\right) & & \text { (marginalize) } \\
& =\prod_{s \in n(x)}\left\{\sum_{X_{s}} F\left(x, X_{s}\right)\right\} & & \text { (interchange sums and products) } \\
& & \text { (recall our fancy formula) } \\
& \left(\sum a_{i}\right)\left(\sum b_{j}\right)=\sum \sum a_{i} b_{j}
\end{array}
$$

Note that each sum is simpler than what we started with because the variable sets are disjoint except for x.

Factor \rightarrow node messages

$$
\begin{aligned}
p(x) & =\sum_{\mathbf{x} / x} \prod_{s \in n(x)} F\left(x, X_{s}\right) \\
& =\prod_{s \in n(x)}\left\{\sum_{X_{s}} F\left(x, X_{s}\right)\right\} \\
& =\prod_{s \in n(x)} \mu_{f_{x} \rightarrow x}(x) \\
\mu_{f_{x} \rightarrow x}(x) & \equiv \sum_{X_{s}} F\left(x, X_{s}\right) \quad \text { (factor-to-node message) }
\end{aligned}
$$

Computing the factor \rightarrow node messages

$\mu_{f_{s} \rightarrow x}(x) \equiv \sum_{X_{s}} F_{s}\left(x, X_{s}\right) \quad$ (sum removes all variables except x.)

Where $F_{s}\left(x, X_{s}\right)=f_{s}\left(x, x_{1}, x_{2}, \ldots, x_{M}\right) \underbrace{G_{1}\left(x_{1}, X_{s 1}\right) G_{2}\left(x_{2}, X_{s 2}\right) \ldots G_{M}\left(x_{M}, X_{s M}\right)}_{\text {Collections of factors in the } \mathrm{M} \text { sub-graphs }}$

Computing the factor \rightarrow node messages

$$
\begin{aligned}
\sum_{X_{s}} F_{s}\left(x, X_{s}\right) & =\sum_{x_{1}} \sum_{x_{2}} \cdots \sum_{x_{M}} f_{s}\left(x, x_{1}, x_{2}, \ldots, x_{M}\right) \prod_{m \in n e\left(f_{s}\right) \backslash x} \sum_{X_{s m}} G_{m}\left(x_{m}, X_{s m}\right) \\
& =\sum_{x_{1}} \sum_{x_{2}} \cdots \sum_{x_{M}} f_{s}\left(x, x_{1}, x_{2}, \ldots, x_{M}\right) \prod_{m \in n e\left(f_{s}\right) \backslash x} \mu_{x_{m} \rightarrow f_{s}}\left(x_{m}\right)
\end{aligned}
$$

where we define:
$\mu_{x_{m} \rightarrow f_{s}}\left(x_{m}\right) \equiv \sum_{X_{s m}} G_{m}\left(x_{m}, X_{s m}\right) \quad$ (node \rightarrow factor messages)

Computing the factor \rightarrow node messages

$\mu_{f_{s} \rightarrow x}(x) \equiv \sum_{X_{s}} F_{s}\left(x, X_{s}\right) \quad$ (sum removes all variables except x.)
Where $F_{s}\left(x, X_{s}\right)=f_{s}\left(x, x_{1}, x_{2}, \ldots, x_{M}\right) G_{1}\left(x_{1}, X_{s 1}\right) G_{2}\left(x_{2}, X_{s 2}\right) \ldots G_{M}\left(x_{M}, X_{s M}\right)$
$\sum_{X_{s}} F_{s}\left(x, X_{s}\right)=\sum_{x_{1}} \sum_{x_{2}} \cdots \sum_{x_{M}} f_{s}\left(x, x_{1}, x_{2}, \ldots, x_{M}\right) \sum_{X_{x 1}} G_{1}\left(x_{1}, X_{s 1}\right) \sum_{X_{t 2}} G_{2}\left(x_{2}, X_{s 2}\right) \cdots \sum_{X_{s k}} G_{M}\left(x_{M}, X_{s M}\right)$
(moving products outside sums where possible)

So, $\sum_{X_{s}} F_{s}\left(x, X_{s}\right)=\sum_{x_{1}} \sum_{x_{2}} \cdots \sum_{x_{M}} f_{s}\left(x, x_{1}, x_{2}, \ldots, x_{M}\right) \prod_{m \in n e\left(f_{s}\right) \backslash x} \sum_{X_{s m}} G_{m}\left(x_{m}, X_{s m}\right)$
(interchanging sums and products)

Summary of computation for factor \rightarrow node message

$$
\underbrace{\mu_{f_{x} \rightarrow x}(x)}_{\text {factor } \rightarrow \text { node }}=\sum_{x_{1}} \ldots \sum_{x_{M}} f\left(x, x_{1}, \ldots, x_{M}\right) \prod_{m \in n\left(f_{s}\right) \backslash x} \underbrace{\mu_{x_{m} \rightarrow f_{s}}\left(x_{m}\right)}_{\text {node } \rightarrow \text { factor }}
$$

The node \rightarrow factor message

(We have defined)

$\mu_{x_{m} \rightarrow f_{s}}\left(x_{m}\right) \equiv \sum_{X_{s_{m}}} G_{m}\left(x_{m}, X_{s_{m}}\right)$
(For a node x_{m} we send its distribution with the other variables in the subgraph marginalized out.)

$G_{l}\left(x_{1}, X_{s_{l}}\right)$

The sum-product algorithm (1)

We could implement what we have just described as recursion, but the local view of nodes getting and passing messages suggests:

Pass messages from leaves to root. If you just want more than one marginal or plan to do other computation, store the results.

Initialization: If leaf node is a variable node, then start with a unity message. If leaf node is factor, then start with the factor.

Computing the node \rightarrow factor message

$$
\mu_{x_{m} \rightarrow f_{s}}\left(x_{m}\right)=\prod_{l \in n\left(x_{m}\right) \backslash f_{s}} \mu_{f_{l} \rightarrow x_{m}}\left(x_{m}\right)
$$

Nodes that only have two links just pass the message through (i.e., in the chain we skipped this part).

The sum-product algorithm (2)

We could implement what we have just described as recursion, but the local view of nodes getting and passing messages suggests:

Pass messages from leaves to root. If you just want more than one marginal or plan to do other computation, store the results.

Initialization: If leaf node is a variable node, then start with a unity message. If leave node is factor, then start with the factor.

Note that all needed messages for computation will arrive at each node eventually.

The root node can compute the needed marginal.

The sum-product algorithm (3)

To prepare for other computations (e.g, all marginals), pass messages from the root to the leaves.

Now every node has incoming messages on all its links, and can thus be considered the root.

Hence we can compute all marginals for twice the cost of computing one of them.
(From before, also note that all messages that can be passed, have now been passed).

The sum-product algorithm (4)

Another easy computation is the marginal for the group of variables in a factor.

Intuitively (and easily shown---homework) this is given by:

$$
p\left(\mathbf{x}_{s}\right)=f\left(\mathbf{x}_{s}\right) \prod_{i \in\left(f_{s}\right)} \mu_{x_{i} \rightarrow f_{s}}\left(x_{i}\right)
$$

Sum-product algorithm example

Let $\quad \tilde{\mathrm{p}}(\mathbf{x})=f_{a}\left(x_{1}, x_{2}\right) f_{b}\left(x_{2}, x_{3}\right) f_{c}\left(x_{2}, x_{4}\right)$

Declare x_{3} as root node.

$$
\begin{aligned}
& \mu_{x_{1} \rightarrow f_{a}}\left(x_{1}\right)=1 \\
& \mu_{f_{a} \rightarrow x_{2}}\left(x_{2}\right)=\sum_{x_{1}} f_{a}\left(x_{1}, x_{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \mu_{x_{4} \rightarrow f_{c}}\left(x_{4}\right)=1 \\
& \mu_{f_{c} \rightarrow x_{2}}\left(x_{2}\right)=\sum_{x_{4}} f_{c}\left(x_{2}, x_{4}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \mu_{x_{2} \rightarrow f_{b}}\left(x_{2}\right)=\mu_{f_{a} \rightarrow x_{2}}\left(x_{2}\right) \mu_{f_{c} \rightarrow x_{2}}\left(x_{2}\right) \\
& \mu_{f_{b} \rightarrow x_{3}}\left(x_{3}\right)=\sum_{x_{2}} f_{b}\left(x_{2}, x_{3}\right) \mu_{x_{2} \rightarrow f_{b}}\left(x_{2}\right)
\end{aligned}
$$

Summary of messages

from leaves to root
$\mu_{x_{1} \rightarrow f_{a}}\left(x_{1}\right)=1$
$\mu_{f_{a} \rightarrow x_{2}}\left(x_{2}\right)=\sum_{x_{1}} f_{a}\left(x_{1}, x_{2}\right)$

$\mu_{x_{4} \rightarrow f_{c}}\left(x_{4}\right)=1$
$\mu_{f_{c} \rightarrow x_{2}}\left(x_{2}\right)=\sum_{x_{4}} f_{c}\left(x_{2}, x_{4}\right)$
$\mu_{x_{2} \rightarrow f_{b}}\left(x_{2}\right)=\mu_{f_{c_{a}}+x_{2}}\left(x_{2}\right) \mu_{f_{c} \rightarrow x_{2}}\left(x_{2}\right)$
$\mu_{f_{b} \rightarrow x_{3}}\left(x_{3}\right)=\sum_{x_{2}} f_{b}\left(x_{2}, x_{3}\right) \mu_{x_{2} \rightarrow f_{b}}\left(x_{2}\right)$

Lets go towards x_{I} first.

$$
\begin{aligned}
& \mu_{x_{2} \rightarrow f_{a}}\left(x_{2}\right)=\mu_{f_{b} \rightarrow x_{2}}\left(x_{2}\right) \mu_{f_{c} \rightarrow x_{2}}\left(x_{2}\right) \\
& \mu_{f_{a} \rightarrow x_{1}}\left(x_{1}\right)=\sum_{x_{2}} f_{a}\left(x_{1}, x_{2}\right) \mu_{x_{2} \rightarrow f_{a}}\left(x_{2}\right)
\end{aligned}
$$

Next we pass messages
from root to leaves.

$$
\begin{aligned}
& \mu_{x_{3} \rightarrow f_{b}}\left(x_{3}\right)=1 \\
& \mu_{f_{b} \rightarrow x_{2}}\left(x_{2}\right)=\sum_{x_{3}} f_{b}\left(x_{2}, x_{3}\right)
\end{aligned}
$$

Candidate for third and fourth?

(similar to previous one)

Summary of messages
from root to leaves.
$\mu_{x_{3} \rightarrow f_{b}}\left(x_{3}\right)=1$
$\mu_{f_{b} \rightarrow x_{2}}\left(x_{2}\right)=\sum_{x_{3}} f_{b}\left(x_{2}, x_{3}\right)$
$\mu_{x_{2} \rightarrow f_{a}}\left(x_{2}\right)=\mu_{f_{b} \rightarrow x_{2}}\left(x_{2}\right) \mu_{f_{c} \rightarrow x_{2}}\left(x_{2}\right)$
$\mu_{f_{a} \rightarrow x_{1}}\left(x_{1}\right)=\sum_{x_{2}} f_{a}\left(x_{1}, x_{2}\right) \mu_{x_{2} \rightarrow f_{a}}\left(x_{2}\right)$
$\mu_{x_{2} \rightarrow f_{c}}\left(x_{2}\right)=\mu_{f_{a} \rightarrow x_{2}}\left(x_{2}\right) \mu_{f_{b} \rightarrow x_{2}}\left(x_{2}\right)$
$\mu_{f_{c} \rightarrow x_{4}}\left(x_{4}\right)=\sum_{x_{2}} f_{c}\left(x_{2}, x_{4}\right) \mu_{x_{2} \rightarrow f_{c}}\left(x_{2}\right)$

An illustrative check

$$
\begin{aligned}
\tilde{p}\left(x_{2}\right) & =\mu_{f_{a} \rightarrow x_{2}}\left(x_{2}\right) \mu_{f_{b} \rightarrow x_{2}}\left(x_{2}\right) \mu_{f_{e \rightarrow x_{2}}}\left(x_{2}\right) \\
& =\left(\sum_{x_{1}} f_{a}\left(x_{1}, x_{2}\right) \mu_{x_{1} \rightarrow f_{a}}\left(x_{1}\right)\right)\left(\sum_{x_{3}} f_{b}\left(x_{2}, x_{3}\right) \mu_{x_{3} \rightarrow f_{b}}\left(x_{1}\right)\right)\left(\sum_{x_{4}} f_{c}\left(x_{2}, x_{4}\right) \mu_{x_{4} \rightarrow f_{c}}\left(x_{1}\right)\right) \\
& =\left(\sum_{x_{1}} f_{a}\left(x_{1}, x_{2}\right)\right)\left(\sum_{x_{3}} f_{b}\left(x_{2}, x_{3}\right)\right)\left(\sum_{x_{4}} f_{c}\left(x_{2}, x_{4}\right)\right) \\
& =\sum_{x_{1}} \sum_{x_{3}} \sum_{x_{4}} f_{a}\left(x_{1}, x_{2}\right) f_{b}\left(x_{2}, x_{3}\right) f_{c}\left(x_{2}, x_{4}\right) \\
& =\sum_{x_{1}} \sum_{x_{1}} \sum_{x_{4}} \tilde{p}(\mathbf{x})
\end{aligned}
$$

Handling observed variables

Usually we have observed variables (e.g., evidence). We simply clamp those variables to their observed values.

More formally, denote hidden variables by \mathbf{h}, and observed ones by \mathbf{v}.
Denote the observed value as $\hat{\mathbf{v}}$. For each observed variable, v_{i},
with value \hat{v}_{i}, we can introduce factors into the graph
$I\left(v_{i}, \hat{v}_{i}\right)= \begin{cases}1 & \text { if } v_{i}=\hat{v}_{i} \\ 0 & \text { otherwise }\end{cases}$
Then, $p(\mathbf{h}, \mathbf{v}=\hat{\mathbf{v}})=p(\mathbf{h}, \mathbf{v}) \prod I\left(v_{i}, \hat{v}_{i}\right)$
(needs to be normalized to get $p(\mathbf{h} \mid \hat{\mathbf{v}})$, but this
is easy since we are doing sum-product.)

Max-sum algorithm

Method to compute.

$$
\begin{aligned}
& \mathbf{x}^{\max }=\underset{\mathbf{x}}{\arg \max } p(\mathbf{x}) \\
& \text { i.e., } p\left(\mathbf{x}^{\max }\right)=\max _{\mathbf{x}} p(\mathbf{x})
\end{aligned}
$$

Recall inference on chains

$p(\mathrm{x})=\psi_{1,2}\left(x_{1}, x_{2}\right) \psi_{2,3}\left(x_{2}, x_{3}\right) \quad \ldots \quad \psi_{N-2, N-1}\left(x_{N-2}, x_{N-1}\right) \psi_{N-1, N}\left(x_{N-1}, x_{N}\right)$

Naive compution of $\arg \max p(\mathbf{x})$
would evauate the above for each value of x , and take the max.

Too expensive!!

Helpful facts

First. note that.

$$
\max _{\mathbf{x}} p(\mathbf{x})=\max _{x_{1}} \max _{x_{2}} \ldots \max _{x_{M}} p(\mathbf{x})
$$

Second, note that.

$$
\max (a b, a c)=a \max (b, c) \quad(\text { for } a \geq 0)
$$

Recall speeding up marginalization

$p\left(x_{n}\right)=\left(\sum_{i=1} \sum_{n=2} \ldots \sum_{n=1} \prod_{i=1}^{n-1} \psi_{n-i, n+i+1}\left(x_{n-i}, x_{n+i+1}\right)\right)\left(\sum_{n=1} \ldots \sum_{x=1} \sum_{x, i n}^{N-1} \prod_{i=1}^{N-1} \psi_{i+1}\left(x_{i}, x_{i+1}\right)\right)$
$\sum_{x_{n-1}} \sum_{x_{n-2}} \ldots \sum_{x_{1}} \prod_{i=1}^{n-1} \psi_{n-i, n-i+1}\left(x_{n-i}, x_{n-i+1}\right)=\left\{\sum_{x_{n-1}} \psi_{n-1, n}\left(x_{n-1}, x_{n}\right) \ldots\left\{\sum_{x_{3}} \psi_{3,4}\left(x_{3}, x_{4}\right)\left\{\sum_{x_{2}} \psi_{2,3}\left(x_{2}, x_{3}\right)\left\{\sum_{x_{1}} \psi_{1,2}\left(x_{1}, x_{2}\right)\right\}\right\}\right\} \ldots\right\}$
and
$\sum_{x_{n+1}} \ldots \sum_{x_{N-1}} \sum_{x_{N}} \prod_{i=n}^{N-1} \psi_{i, i+1}\left(x_{i}, x_{i+1}\right)=\left\{\sum_{x_{n+1}} \psi_{n, n+1}\left(x_{n}, x_{n+1}\right) \ldots\left\{\sum_{x_{N-1}} \psi_{N-2, N-1}\left(x_{N-2}, x_{N-1}\right)\left\{\sum_{x_{N}} \psi_{N-1, N}\left(x_{N-1}, x_{N}\right)\right\}\right\} \ldots\right\}$

What if we could do with $\max ()$ what we are doing with Σ ?

Max on a chain

In analogy with marginals on a chain,
$\max _{\mathbf{x}} p(\mathbf{x})=\frac{1}{Z} \max _{x_{n}}\left\{\left[\max _{x_{n-1}} \max _{x_{n-2}} \ldots \max _{x_{1}} \prod_{i=1}^{n-1} \psi_{n-i, n-i+1}\left(x_{n-i}, x_{n-i+1}\right)\right] \cdot\left[\max _{x_{n+1}} \max _{x_{n+2}} \ldots \max _{x_{N}} \prod_{i=n}^{N-1} \psi_{i, i+1}\left(x_{i}, x_{i+1}\right)\right]\right\}$
where,

```
\(\max _{x_{n-1}} \max _{x_{n-2}} \ldots \max _{x_{1}}\left(\prod_{i=1}^{n-1} \psi_{n-i, n-i+1}\left(x_{n-i}, x_{n-i+1}\right)\right)=\)
    \(\max _{x_{n-1}}\left(\psi_{n-1, n}\left(x_{n-1}, x_{n}\right) \cdot \max \left(\ldots \max _{x_{3}}\left(\psi_{3,4}\left(x_{3}, x_{4}\right) \cdot \max _{x_{2}}\left(\psi_{2,3}\left(x_{2}, x_{3}\right) \cdot \max _{x_{1}}\left(\psi_{1,2}\left(x_{1}, x_{2}\right)\right)\right)\right)\right)\right)\)
```

and similarly for the part in red.

Max-sum algorithm

Two steps.

1) Compute the max while remembering certain computations
2) Compute a value of \mathbf{x} that achieves the max

The message passing algorithm for step (1) is clear from the analog with the "sum-product" algorithm, except that it would then be called the "max-product" algorithm.

Computing long products looses precision (*), so we switch to $\log ()$, and call it the max-sum algorithm.
(*) Less of an issue with marginalization.

Max-sum algorithm (continued)

Note that

$$
\ln \left(\max _{\mathbf{x}}(p(x))\right)=\max _{\mathbf{x}}(\ln (p(x)))
$$

And we have

$$
\begin{aligned}
\ln (\max (a b, a c)) & =\max (\log (a b), \log (a c)) \\
& =\max (\ln (a)+\ln (b), \ln (a)+\ln (c)) \\
& =\ln (a)+\max (\ln (b)+\ln (c))
\end{aligned}
$$

(In general, $\max (x+y, x+z)=x+\max (y, z))$

Can also get this from taking logs of product version,
namely: $\quad \max (a b, a c)=a \cdot \max (b, c)$, for $a \geq 0$)

Max-sum algorithm

Working now in analogy with the sum-product algorithm (*)

$$
\mu_{f \rightarrow x}(x)=\max _{x_{1}, x_{2}, \ldots, x_{M}}\left[\ln f\left(x, x_{1}, x_{2}, \ldots, x_{M}\right)+\sum_{m \in n\left(f_{s}\right) \backslash x} \mu_{x_{m} \rightarrow f}\left(x_{m}\right)\right]
$$

and
$\mu_{x \rightarrow f}(x)=\sum_{l \in n(x) f f} \mu_{f \rightarrow x_{i}}(x)$
*Recall that in sum-product: $\underbrace{\mu_{f_{x} \rightarrow x}(x)}_{\text {factor } \rightarrow \text { node }}=\sum_{x_{1}} \ldots \sum_{x_{M}} f\left(x, x_{1}, \ldots, x_{M}\right) \prod_{m \in n\left(f_{s} \backslash x\right.} \underbrace{\mu_{x_{m} \rightarrow f_{s}}\left(x_{m}\right)}_{\text {node } \rightarrow \text { factor }}$

Max-sum algorithm

Working now in analogy with the sum-product algorithm

For initialization at leaf nodes
$\mu_{f \rightarrow x}(x)=0$
and
$\mu_{x \rightarrow f}(x)=\ln (f(x))$

Max-sum algorithm

Working now in analogy with the sum-product algorithm

To compute the max using the choosen root node,

$$
\ln \left(\mathrm{p}^{\max }\right)=\max _{\mathbf{x}}\left[\sum_{s \in n(x)} \mu_{s \rightarrow x_{s}}(x)\right]
$$

Max-sum algorithm

Now we need to find an \mathbf{x} where $p()$ reaches the max.

This does not have an exact analogy in the sum-product algorithm.

Why we do not know x yet:

The factor-to-node messages takes a distribution for the maxima over the upstream variables, and multiplies it by the factor (sum using logs), and reports a new distribution.

We do not yet know which value in the new distribution will be part of the maximum (it is not necessarily argmax of the reported distribution).

Max-sum algorithm

Can passing messages backwards find the arg max?

At the root node, which is a product (sum in logs), when we find the maximum, we can easily record the argmax for that node's variable, and it will be a valid for a particular maximizing configuration.

In analogy with sum-product, we might be tempted to send messages backwards to "finish the job" to get values for the other nodes.

But this can fail if there is more than one maximal configuration.
You can get pieces of each one!
We are only sure that the value is part of some maximal configuration.
You could end up with an inconsistent set of values.

Max-sum algorithm

Adjustment to forward message passing for "backtracking:"

The factor-to-node operations store the dependencies for the various choices of x_{i}.

Then, once the node-to-factor backtracking expresses a choice, a consistent set of values for x_{i} for the max can be found.

For example, suppose the root node could choose either setting its variable to 2 or 3,2 . Then it sends to the incoming nodes, the value " 2 ". Those nodes need to know how their incoming links have maximized to get the value for " 2 " passed to the root.

Max-sum algorithm (back-tracking)

In more detail, when we compute
$\mu_{f \rightarrow x}(x)=\max _{x_{1}, x_{2}, \ldots, x_{M}}\left[\ln \left(f\left(x, x_{1}, x_{2}, \ldots, x_{M}\right)+\sum_{m \in n\left(f_{s}\right) \backslash x} \mu_{x_{m} \rightarrow f}\left(x_{m}\right)\right)\right]$
store
$\phi(x)=\underset{x_{1}, x_{2}, \ldots, x_{M}}{\arg \max }\left[\ln f\left(x, x_{1}, x_{2}, \ldots, x_{M}\right)+\sum_{m \in n\left(f_{s}\right) \backslash x} \mu_{x_{m} \rightarrow f}\left(x_{m}\right)\right]$
(This records the downstream choices for any upstream choice of x)

Then, once we know the overall max, we can recover a set of
x_{i} that leads to it by backtracking.

