
Inference on graphs

• Given a graph and its conditionals or potentials compute

p ! e() (particular ! and e, marginalizing out other variables)

p X() (particular event, marginalizing out other variables)

argmax p ! e() (particular ! and e; marginalizing other variables)

argmax p ! ,!N ,eN e() (all variables, will nuisance / unobserved)

Inference on graphs

• Simplest example (Bayes’ rule)
- (a) model
- (b) illustrates observed
- (c) inference reverses the arrow

• Computationally

x

y

x

y

x

y

(a) (b) (c)

p x y() = p y x() p x()
p y !x() p !x()

!x
"

Marginals on a chain

Assume N discrete variables, with K values each.

Compute the marginal of a node in the middle, p xn()

Recall
x1 x2 xN−1 xN

x1 x2 xN−1 xN

p x() = p x1() p x2 x1() p x3 x2()!!!!!!! p xN"1 xN"2() p xN xN"1()

p x() =! 1,2 x1, x2()! 2,3 x2, x3()!!!...!!!! N"2,N"1 xN"2, xN"1()! N"1,N xN"1, xN()
Converted to

x1 xn−1 xn xn+1 xN

µα(xn−1) µα(xn) µβ(xn) µβ(xn+1)

Marginals on a chain

Direct calculation of p xn()
p xn() =!! !

x2

!
x1

! ... !
xn+1

!
xn"1

! ... ! p x()
xN
!

xN"1

!

Computational complexity is O(KN). Way too slow!

p x() =! 1,2 x1, x2()! 2,3 x2, x3()!!!...!!!! N"2,N"1 xN"2, xN"1()! N"1,N xN"1, xN()

x1 xn−1 xn xn+1 xN

µα(xn−1) µα(xn) µβ(xn) µβ(xn+1)

Main idea is to rearrange terms to exploit conditional
independence.

p x() =! 1,2 x1, x2()! 2,3 x2, x3()!!!...!!!! N"2,N"1 xN"2, xN"1()! N"1,N xN"1, xN()

Computing marginals on a chain efficiently Fancy formulas from algebra

f x1,!x2 !,!...!,!xN()
x1 ,! x2 !,!...!,!xN
all values of each
! "## $##

! = ...
x2 !

!
x1

!
xN !
!

any order you like
! "# $#

f x1,!x2 !,!...!,!xN()

(essentially a definition)

ai!() bj!() = ai!! bj

p xn() =!! ! ! ! 1,2 x1, x2()...! n"1,n xn"1, xn()
fL x1,x1, ..., xn()

! "#### $####
! n,n+1 xn , xn+1()...! N"1,N xN"1, xN()

fR xn ,xn+1, ..., xN()
! "###### $######xN

#
xN"1

#
xn+1
!

xn"1
#

x2
#

x1
#

=!! ! ! fL x1, x1, ..., xn()
xN
#

xN"1

fR xn , xn+1, ..., xN()
xn+1
!

xn"1
#

x2
#

x1
#

= ! ... fL x1, x1, ..., xn()!
xn"1
#

x2
#

x1
#

$

%&
'

()
! ... ! fR xn , xn+1, ..., xN()

xN
#

xN"1

#
xn+1
#

$

%&
'

()

= ! ... ! i, i+1 xi , xi+1()
i=1

n"1

* !
xn"1
#

x2
#

x1
#

$

%&
'

()
! ... ! ! i, i+1 xi , xi+1()

i=n

N"1

*
xN
#

xN"1

#
xn+1
#

$

%&
'

()

= ! ... ! n"i,n"i+1 xn"i , xn"i+1()
i=1

n"1

*
x1
#

xn"2
#

xn"1
#

$

%&
'

()
! ... ! ! i, i+1 xi , xi+1()

i=n

N"1

*
xN
#

xN"1

#
xn+1
#

$

%&
'

()

x1 xn−1 xn xn+1 xN

µα(xn−1) µα(xn) µβ(xn) µβ(xn+1)

Back to
marginals
on a chain p x() =! 1,2 x1, x2()! 2,3 x2, x3()!!!...!!!! N"2,N"1 xN"2, xN"1()! N"1,N xN"1, xN()

p xn() = !
xn!2
"

xn!1
" ... ! # n!i, n!i+1 xn!i , xn!i+1()

i=1

n!1

$
x1
"

%

&'
(

)*
!
xn+1
" ... ! # i, i+1 xi , xi+1()

i=n

N!1

$
xN
"

xN!1

"
%

&'
(

)*

! n"i, n"i+1 xn"i , xn"i+1()
i=1

n"1

=! n"1, n xn"1, xn()! n"2, n"1 xn"2 , xn"2() ... ! 2, 3 x2 , x3()! 1, 2 x1, x2()

More warmup

! x2, x3()
No dependency on x1
hence we can move
factor outside sum
over x1.

!"# $#
! x1, x2()

x1

"
x2

" = ! x2, x3() ! x1, x2()
x1

"
Vector of size over the
components of x2

! "# $#x2

"

(Recall the distibutive law: ba + ca = a(b + c))

For example, K=2, the first component of the sum, x3
1, is:

! x2, x3
1()! x1, x2()

x1

"
x2

"
=! x2

1, x3
1()! x1

1, x2
1() +! x2

1, x3
1()! x1

2, x2
1() +! x2

2, x3
1()! x1

1, x2
2() +! x2

2, x3
1()! x1

2, x2
2()

=! x2
1, x3

1()i ! x1
1, x2

1() +! x1
2, x2

1()() +! x2
2, x3

1()i ! x1
1, x2

2() +! x1
2, x2

2()()
=! x2

1, x3
1() ! x1

i , x2
1()

x1
i{ }
"

#

$
%%

&

'
((
+! x2

2, x3
1() ! x1

i , x2
1()

x1
i{ }
"

#

$
%%

&

'
((

= ! x2
i , x3

1() ! x1
i , x2

1()
x1
i{ }
"

x2
i{ }
"

p xn() = !
xn!2
"

xn!1
" ... ! # n!i, n!i+1 xn!i , xn!i+1()

i=1

n!1

$
x1
"

%

&'
(

)*
!
xn+1
" ... ! # i, i+1 xi , xi+1()

i=n

N!1

$
xN
"

xN!1

"
%

&'
(

)*

! n"i, n"i+1 xn"i , xn"i+1()
i=1

n"1

=! n"1, n xn"1, xn()! n"2, n"1 xn"2 , xn"2() ... ! 2, 3 x2 , x3()! 1, 2 x1, x2()

!
xn!2

"
xn!1

" ... ! # n!i, n!i+1 xn!i , xn!i+1()
i=1

n!1

$
x1

" = !
xn!2

"
xn!1

" ... # n!i, n!i+1 xn!i , xn!i+1()
i=1

n!2

$!# 1,2 x1, x2()
x1

"
%
&
'

('

)
*
'

+'
This has K elements, indexed
by x2

! "## $##x2

"

p xn() = !
xn!2
"

xn!1
" ... ! # n!i, n!i+1 xn!i , xn!i+1()

i=1

n!1

$
x1
"

%

&'
(

)*
!
xn+1
" ... ! # i, i+1 xi , xi+1()

i=n

N!1

$
xN
"

xN!1

"
%

&'
(

)*

! n"i, n"i+1 xn"i , xn"i+1()
i=1

n"1

=! n"1, n xn"1, xn()! n"2, n"1 xn"2 , xn"2() ... ! 2, 3 x2 , x3()! 1, 2 x1, x2()

!
xn!2

"
xn!1

" ... ! # n!i, n!i+1 xn!i , xn!i+1()
i=1

n!1

$
x1

" = !
xn!2

"
xn!1

" ... # n!i, n!i+1 xn!i , xn!i+1()
i=1

n!2

$!# 1,2 x1, x2()
x1

"
%
&
'

('

)
*
'

+'x2

"

= !
xn!2

"
xn!1

" ... # n!i, n!i+1 xn!i!1, xn!i()
i=1

n!3

$ # 2,3 x2, x3() !# 1,2 x1, x2()
x1

"
%
&
'

('

)
*
'

+'x2

"
Like a dot product for each x3 , with elements indexed by x2

! "##### $#####

%

&
''

(
'
'

)

*
''

+
'
'

x3

"

p xn() = !
xn!2
"

xn!1
" ... ! # n!i, n!i+1 xn!i , xn!i+1()

i=1

n!1

$
x1
"

%

&'
(

)*
!
xn+1
" ... ! # i, i+1 xi , xi+1()

i=n

N!1

$
xN
"

xN!1

"
%

&'
(

)*

! n"i, n"i+1 xn"i , xn"i+1()
i=1

n"1

=! n"1, n xn"1, xn()! n"2, n"1 xn"2 , xn"2() ... ! 2, 3 x2 , x3()! 1, 2 x1, x2()

!
xn!2
"

xn!1
" ... ! # n!i, n!i+1 xn!i , xn!i+1()

i=1

n!1

$
x1
" = !

xn!2
"

xn!1
" ... # n!i, n!i+1 xn!i , xn!i+1()

i=1

n!2

$!# 1,2 x1, x2()
x1
"

%
&
'

('

)
*
'

+'x2
"

= !
xn!2
"

xn!1
" ... # n!i, n!i+1 xn!i!1, xn!i()

i=1

n!3

$ # 2, 3 x2 , x3() !# 1,2 x1, x2()
x1
"

%
&
'

('

)
*
'

+'x2
"

%
&
'

('

)
*
'

+'x3
"

...

= # n!1,n xn!1, xn()
xn!1
" ... # 3, 4 x3, x4()

x3
" # 2, 3 x2 , x3() !# 1,2 x1, x2()

x1
"

%
&
'

('

)
*
'

+'x2
"

%
&
'

('

)
*
'

+'

%
&
'

('

)
*
'

+'

%
&
'

('

)
*
'

+'

and

!
xn!2
"

xn!1
" ... ! # n!i,n!i+1 xn!i , xn!i+1()

i=1

n!1

$
x1
" = # n!1,n xn!1, xn()

xn!1
" ... # 3,4 x3, x4()

x3
" # 2,3 x2, x3() !# 1,2 x1, x2()

x1
"

%
&
'

('

)
*
'

+'x2
"

%
&
'

('

)
*
'

+'

%
&
'

('

)
*
'

+'
...

%
&
'

('

)
*
'

+'

(Deriving the right factor is similar to doing
the left one which we did in detail.)

xn+1
! ... ! " i, i+1 xi , xi+1()

i=n

N#1

$
xN
!

xN#1

! = " n,n+1 xn , xn+1()!
xn+1
! ... " N#2,N#1 xN#2, xN#1() !" N#1, N xN#1, xN()

xN
!

%
&
'

('

)
*
'

+'xN#1

!
%
&
'

('

)
*
'

+'
...

%
&
'

('

)
*
'

+'

p xn() = !
xn!2
"

xn!1
" ... ! # n!i, n!i+1 xn!i , xn!i+1()

i=1

n!1

$
x1
"

%

&'
(

)*
!
xn+1
" ... ! # i, i+1 xi , xi+1()

i=n

N!1

$
xN
"

xN!1

"
%

&'
(

)*

where

Matrix interpretation (for two variables)

! i,! i+1 xi , xi+1()"Qi+1,! i (note transposition!)

! i,! i+1 xi , xi+1()
i
" sums columns to get a vector Vi+1

! i+1,! i+2 xi+1, xi+2() ! i,! i+1 xi , xi+1()
xi
#

$
%
&

'&

(
)
&

*&xi+1

"Qi+2,! i+1 !i!Vi

!
xn!2
"

xn!1
" ... ! # n!i,n!i+1 xn!i , xn!i+1()

i=1

n!1

$
x1
" = # n!1,n xn!1, xn()

xn!1
" ... # 3,4 x3, x4()

x3
" # 2,3 x2, x3() !# 1,2 x1, x2()

x1
"

%
&
'

('

)
*
'

+'x2
"

%
&
'

('

)
*
'

+'

%
&
'

('

)
*
'

+'
...

%
&
'

('

)
*
'

+'

Computational Complexity

!
xn!2

"
xn!1

" ... ! # n!i,n!i+1 xn!i , xn!i+1()
i=1

n!1

$
x1

" = # n!1,n xn!1, xn()
xn!1

" ... # 3,4 x3, x4()
x3

" # 2,3 x2, x3() !# 1,2 x1, x2()
x1

"
K sums of K values
! "## $##

%

&
''

(
'
'

)

*
''

+
'
'

K evaluations of K products
! "##### $#####

x2

"

K sums of K values
% &'''''''''''''''''''''

%

&

'
'
''

(

'
'
'
'

)

*

'
'
''

+

'
'
'
'

%

&

'
'
''

(

'
'
'
'

)

*

'
'
''

+

'
'
'
'

...

%

&

'
'
''

(

'
'
'
'

)

*

'
'
''

+

'
'
'
'

Suppose each variable has K values
What is the cost of evaluating the first factor?

The cost for computing the part shown in orange is O K 2().

Computational Complexity

!
xn!2

"
xn!1

" ... ! # n!i,n!i+1 xn!i , xn!i+1()
i=1

n!1

$
x1

" = # n!1,n xn!1, xn()
xn!1

" ... # 3, 4 x3, x4()
x3

" # 2, 3 x2 , x3() !# 1,2 x1, x2()
x1

"
K sums of K values
! "## $##

%

&
''

(
'
'

)

*
''

+
'
'

K evaluations of K products
! "##### $#####

x2

"

K sums of K values
% &'''''''''''''''''''''

%

&

'
'
''

(

'
'
'
'

)

*

'
'
''

+

'
'
'
'

%

&

'
'
''

(

'
'
'
'

)

*

'
'
''

+

'
'
'
'

...

%

&

'
'
''

(

'
'
'
'

)

*

'
'
''

+

'
'
'
'

Suppose each variable has K values
What is the cost of evaluating the first factor?

The cost of the left factor is O N !K 2().
The other factor is similar.

We see that the overall cost is O N !K 2().
Much better than the naive computation where we had O KN()!

Message passing interpretation

x1 xn−1 xn xn+1 xN

µα(xn−1) µα(xn) µβ(xn) µβ(xn+1)

Define µ! xn() as a message passed from node xn"1 to node xn .

Define µb xn() as a message passed from node xn+1 to node xn .

Passing messages will correspond to the computation of
taking input messages, and computing output messages.

Message passing interpretation

!
xn!2
"

xn!1
" ... ! # n!i,n!i+1 xn!i , xn!i+1()

i=1

n!1

$
x1
" =

n!1,n xn!1, xn()
xn!1
" ... # 3,4 x3, x4()

x3
" # 2,3 x2, x3() !# 1,2 x1, x2()

x1
"

µ% x2()
! "## $##

&

'
((

)
(
(

*

+
((

,
(
(

x2
"

µ% x3()
% &'''''''''''''''''''''

&

'

(
(
(

)

(
(
(

*

+

(
(
(

,

(
(
(

µ% x4()
! "######### $#########

&

'

(
(
(
((

)

(
(
(
(
(

*

+

(
(
(
((

,

(
(
(
(
(

...

µ% xn()
! "############## $##############

&

'

(
(
(
(
((

)

(
(
(
(
(
(

*

+

(
(
(
(
((

,

(
(
(
(
(
(

x1 xn−1 xn xn+1 xN

µα(xn−1) µα(xn) µβ(xn) µβ(xn+1)

Message passing interpretation

x1 xn−1 xn xn+1 xN

µα(xn−1) µα(xn) µβ(xn) µβ(xn+1)

xn+1
! ... ! " i, i+1 xi , xi+1()

i=n

N#1

$
xN
!

xN#1

! =

" n,n+1 xn , xn+1()!
xn+1
! ... " N#2,N#1 xN#2, xN#1() !" N#1, N xN#1, xN()

xN
!

µb xN#1()
! "### $###

%

&
''

(
'
'

)

*
''

+
'
'

xN#1

!

µb xN#2()
! "######## $########

%

&

'
'
'

(

'
'
'

)

*

'
'
'

+

'
'
'

...

µb xn()
! "############# $#############

%

&

'
'
'
''

(

'
'
'
'
'

)

*

'
'
'
''

+

'
'
'
'
'

Message passing interpretation

x1 xn−1 xn xn+1 xN

µα(xn−1) µα(xn) µβ(xn) µβ(xn+1)

p xn() = 1
Z
µa xn()µb xn()

Algorithm Send a message from x1 to xn.
Send a message from xN to xn.
Element wise multiply messages.
Normalize by sum (Z).

Computing all marginals

x1 xn−1 xn xn+1 xN

µα(xn−1) µα(xn) µβ(xn) µβ(xn+1)

To compute all marginals, send a message from left to right,
and right to left, storing the result.

Now compute any marginal as before.

This way, computing all marginals is only twice as
expensive as computing one of them.

The normalization constant is easily computed using any
convenient node.

What if a node is observed?

x1 xn−1 xn xn+1 xN

µα(xn−1) µα(xn) µβ(xn) µβ(xn+1)

If a node is observed, then we do the obvious. Specifically,
we clamp the values of variables to the particular case.

This means that messages flowing into it, do not affect
messages flowing out, which are set to the “clamped” value.

Suppose p(x) factorizes as:

Make a node for each xi as usual.

Now, make a different kind of node for f() (e.g., squares).

Draw edges between the factor nodes and the variables in the
variable set, s.

Note that the factorization formula means that we can convert
both directed and undirected graphs to factor graphs.

p x() = f xs()
s
! where xs are sets of of variables within x.

Factor Graphs

x1 x2 x3

fa fb fc fd

Suppose p(x) factorizes as:

The graph is:

p x() = f xs()
s
! = fa x1, x2() fb x1, x2() fc x2, x3() fd x3()

Factor Graph Example

x1 x2 x3

fa fb fc fd

Suppose p(x) factorizes as:

p x() = f xs()

s
! = fa x1, x2() fb x1, x2() fc x2, x3() fd x3()

Factor Graph Example (continued)

This layout emphasizes that
factor graphs are bipartite.

Note two factors for the clique
for 1 and 2, suggesting that
factor graphs can preserve extra
structure compared to
undirected graphs.

x1 x2

x3

x1 x2

x3

fc

fa fb

Factor Graph Example (2)

p x() = p x1()
fa
! p x2()

fb
! p x3 x1, x2()

fc
" #$ %$

x1 x2

x3

f

x1 x2

x3

x1 x2

x3

fc

fa fb

Factor Graph Example (2)

second answer

Factor Graph Summary

p x() = f xs()
s
! where xs are sets of of variables within x.

Denote variables by circles

Denote each factor by a square

Draw links between squares and variables in the sets xs.

Factor graphs are bipartite

Factor graph for a distribution is not necessarily unique.

fs

x1

x2

x3

x1 xn−1 xn xn+1 xN

µα(xn−1) µα(xn) µβ(xn) µβ(xn+1)

Factor graphs conveniently represent the extended message
passing needed for inference on trees/polytrees.

Trees/Polytrees
A directed graph is tree if the root node has no parents, others
have exactly one parent.

An undirected graph is a tree if there is only one path
between any pair of nodes.

A directed graph is a polytree if there is only one path per
pair of nodes.

Factor Graphs and Trees

The factor graphs for directed trees, undirected trees,
and directed polytrees are all trees.

(Recall definition for undirected trees---there is only
one path between any two nodes).

This means that (variable) node, xn, with K branches
divides a tree into K subtrees whose factors do not share
variables except xn.

Observations about factor graphs for trees

Any node can be root

Any node with K links splits the graph into K subgraphs
which do not share nodes.

If we pass messages from:
1) the leaves to a chosen root;
2) the chosen root to the leaves,

then all messages that can be passed have been passed.

Further, the number of messages in 1 and 2 are the same.

x1 x2 x3

x4

x1 x2 x3

x4

Observations about factor graphs

(x3 is the root)

Sum-product algorithm

Generalizes what we did with chains.

Generalizes and simplifies an algorithm introduced as
“belief propagation”.

As with chains, consider the problem of computing the
marginal of a selected node, xn.

x connects subgraphs
with node sets A, B, C.

x A
B

C

p x() = F x,XA()F x,XB()F x,XC()
where each of these three factors are themselves
groups of factors over x and the subgraphs.

More explicitly,

F x,XA() = f Xs()
s
! with Xs " x{ }! A

F x,XB() = f Xs()
s
! with Xs " x{ }! B

F x,XC() = f Xs()
s
! with Xs " x{ }!C

p x() = F x,XA()F x,XB()F x,XC()
where each of these three factors are themselves
groups of factors over x and the subgraphs.

More explicitly,

F x,XA() = f Xs()
s
! with Xs " x{ }! A

F x,XB() = f Xs()
s
! with Xs " x{ }! B

F x,XC() = f Xs()
s
! with Xs " x{ }!C

x A
B

C

p x() = p x()
X \ x{ }
! = F x,XA()F x,XB()F x,XC()

X \ x{ }
! = F x,XA()

A
!"#$

%
&'

F x,XB()
B
!"#$

%
&'

F x,XC()
C
!"#$

%
&'

(recall our fancy formula)

ai!() bj!() = ai!! bj

p x() = F x,XA()F x,XB()F x,XC()
where each of these three factors are themselves
groups of factors over x and the subgraphs.

More explicitly,

F x,XA() = f Xs()
s
! with Xs " x{ }! A

F x,XB() = f Xs()
s
! with Xs " x{ }! B

F x,XC() = f Xs()
s
! with Xs " x{ }!C

x A
B

C

p x() = p x()
X \ x{ }
! = F x,XA()F x,XB()F x,XC()

X \ x{ }
! = F x,XA()

A
!"#$

%
&'

F x,XB()
B
!"#$

%
&'

F x,XC()
C
!"#$

%
&'

Consider the first factor

x

A

F x,XA()
A
! = f x, xA1, xA2()

A
! FA1 xA1,A1()FA2 xA2,A2()

= f x, xA1, xA2() FA1 xA1,A1()
A1
! FA2 xA2,A2()

A2
!

xA1,xA2
!

x xA1

xA2

A1 A2

Considering the first factor in the product on the previous slide,

F x,XA()
A
! = f x, xA1, xA2()

A
! FA1 xA1,A1()FA2 xA2,A2()

= f x, xA1, xA2() FA1 xA1,A1()
A1
! FA2 xA2,A2()

A2
!

xA1,xA2
!

x

A

x xA1

xA2

A1 A2

To continue the expansion,
consider the first factor

F x,XA()
A
! = f x, xA1, xA2()

A
! FA1 xA1,A1()FA2 xA2,A2()

= f x, xA1, xA2() FA1 xA1,A1()
A1
! FA2 xA2,A2()

A2
!

xA1,xA2
!

x

A

x xA1

xA2

A1 A2

This factor expands to
FA1 xA1,A1()

A1
! = FA1,i xA1,A1i()

ne xA1()\ fx ,A
"

Sum-product algorithm

We could continue on recursively until we get to the leaf
nodes, thereby computing p(x) via recursion.

However, a message passing implementation is simpler, and is
better suited to computing all marginals at once.

We defined two kinds of messages:
1) From nodes to factors.
2) From factors to nodes.

Sum-product algorithm

We defined two kinds of messages:
1) From factors to nodes.
2) From nodes to factors.

In analogy with chains, factor-to-node messages provide marginal
distributions for the node, for a subgraph. (In the chain case, we had
the left side and the right side).

In the chain case we did not have factor nodes. This worked because
the second kind of message (nodes-to-factor) is just “pass through” or
“copy” in the case of only two links. So, we described it as simply
passing messages from node to node.

xfs

µfs→x(x)

F
s
(x

,X
s
)

p x() = F x,Xs()
s!n x()
"

x/x
(marginalize)

= F x,Xs()
Xs
#

$
%
&

'&

(
)
&

*&s!n x()
" (interchange sums and products)

(recall our fancy formula)

ai!() bj!() = ai!! bj

Note that each sum is simpler than what we started
with because the variable sets are disjoint except for x.

Marginal distribution for a node x

p x() = F x,Xs()
s!n x()
"

x /x
#

= F x,Xs()
Xs
#

$
%
&

'&

(
)
&

*&s!n x()
"

= µ fx+x x()
s!n x()
"

µ fx+x x() , F x,Xs()
Xs
#

xfs

µfs→x(x)

F
s
(x

,X
s
)

Factor ! node messages

(factor-to-node message)

µ fs!x x() " Fs x,Xs()
Xs
(sum removes all variables except x.)

Where Fs x,Xs() = fs x, x1, x2, …, xM()G1 x1,Xs1()G2 x2,Xs2()…GM xM ,XsM()
Collections of factors in the M sub-graphs

! "####### $#######

Computing the factor ! node messages

xm

xM

x
fs

µxM→fs(xM)

µfs→x(x)

Gm(xm, Xsm)1 11

1

µ fs!x x() " Fs x,Xs()
Xs
(sum removes all variables except x.)

Where Fs x,Xs() = fs x, x1, x2, …, xM()G1 x1,Xs1()G2 x2,Xs2()…GM xM ,XsM()
Fs x,Xs()

Xs
= !

x2

#
x1

fs x, x1, x2, …, xM()
xM
G1 x1,Xs1()

Xx1

G2 x2,Xs2()
Xx 2

! GM xM ,XsM()
XxM
#

(moving products outside sums where possible)

So, Fs x,Xs()
Xs
= !

x2

#
x1

fs x, x1, x2, …, xM()
xM
Gm xm ,Xsm()

Xxm
#

m$ne fs()\x
%

(interchanging sums and products)

Computing the factor ! node messages

xm

xM

x
fs

µxM→fs(xM)

µfs→x(x)

Gm(xm, Xsm)1 11

1

Fs x,Xs()
Xs
! = !

x2

!
x1

! fs x, x1, x2, …, xM()
xM
! Gm xm ,Xsm()

Xxm
!

m"ne fs()\x
#

= !
x2

!
x1

! fs x, x1, x2, …, xM()
xM
! µxm$ fs

xm()
m"ne fs()\x
#

where we define:

µxm$ fs
xm() % Gm xm ,Xsm()

Xxm
! (node$ factor messages)

Computing the factor ! node messages

xm

xM

x
fs

µxM→fs(xM)

µfs→x(x)

Gm(xm, Xsm)1 11

1

µ fx!x x()
factor!node
!"# $#

= !...
x1
" !! f x, x1,!...!,!xM()

xM
" µxm! fs

xm()
node!factor
! "# $#m#n fs()\ x

$

Summary of computation for factor ! node message

xm

xM

x
fs

µxM→fs(xM)

µfs→x(x)

Gm(xm, Xsm)1 11

1

The node ! factor message

(We have defined)

µxm! fs
xm() " Gm xm ,Xsm()

Xsm

#
(For a node xm we send its distribution
with the other variables in the subgraph
marginalized out.)

xm

xM

x
fs

µxM→fs(xM)

µfs→x(x)

Gm(xm, Xsm)1 11

1

µxm! fs
xm() = µ fl!xm

xm()
l"n xm()\ fs
#

Nodes that only have two links just
pass the message through (i.e., in
the chain we skipped this part).

Computing the node ! factor message

xm

fl

fL

fs

Fl(xm, Xml)

µxm! fs

1

1 1

x f

µx→f (x) = 1

xf

µf→x(x) = f(x)

The sum-product algorithm (1)

We could implement what we have just described as recursion, but
the local view of nodes getting and passing messages suggests:

Pass messages from leaves to root. If you just want more than one
marginal or plan to do other computation, store the results.

Initialization: If leaf node is a variable node, then start with a
unity message. If leaf node is factor, then start with the factor.

The sum-product algorithm (2)

We could implement what we have just described as recursion, but
the local view of nodes getting and passing messages suggests:

Pass messages from leaves to root. If you just want more than one
marginal or plan to do other computation, store the results.

Initialization: If leaf node is a variable node, then start with a
unity message. If leave node is factor, then start with the factor.

Note that all needed messages for computation will arrive at each
node eventually.

The root node can compute the needed marginal.

The sum-product algorithm (3)

To prepare for other computations (e.g, all marginals), pass
messages from the root to the leaves.

Now every node has incoming messages on all its links, and can
thus be considered the root.

Hence we can compute all marginals for twice the cost of
computing one of them.

(From before, also note that all messages that can be passed, have
now been passed).

The sum-product algorithm (4)

Another easy computation is the marginal for the group of
variables in a factor.

Intuitively (and easily shown---homework) this is given by:

p xs() = f xs() µxi! fs
i"n fs()
xi()

fs

x1

x2

x3

The sum-product algorithm (5)

If the factor graph came from a directed graph, then the expression
for p(x) is already normalized.

Otherwise (as was the case of the chain), we can determine the
normalization constant by summing up one of the marginals
(relatively inexpensive because only one variable is involved).

x1 x2 x3

x4

fa fb

fc

Sum-product algorithm example

 Let !p x() = fa x1, x2() fb x2 , x3() fc x2 , x4()

Declare x3 as
root node.

µx1! fa
x1() = 1

µ fa!x2
x2() = fa

x1
" x1, x2()

x1 x2 x3

x4

fa fb

fc

µ fx!x x()
factor!node
!"# $#

= !...
x1
" !! f x, x1,!...!,!xM()

xM
" µxm! fs

xm()
node!factor
! "# $#m#n fs()\ x

$

µx4! fc
x4() = 1

µ fc!x2
x2() = fc

x4
" x2, x4()

x1 x2 x3

x4

fa fb

fc

x1 x2 x3

x4

fa fb

fc

µx2! fb
x2() = µ fa!x2

x2()µ fc!x2
x2()

µ fb!x3
x3() = fb

x2
" x2 , x3()µx2! fb

x2()

x1 x2 x3

x4

fa fb

fc

Summary of messages
from leaves to root

µx1! fa
x1() = 1

µ fa!x2
x2() = fa

x1

" x1, x2()

µx4! fc
x4() = 1

µ fc!x2
x2() = fc

x4

" x2 , x4()

µx2! fb
x2() = µ fa!x2

x2()µ fc!x2
x2()

µ fb!x3
x3() = fb

x2

" x2 , x3()µx2! fb
x2()

x1 x2 x3

x4

fa fb

fc

µ fa!x2
x2() = fa

x1
" x1, x2()

µx4! fc
x4() = 1

µ fc!x2
x2() = fc

x4
" x2 , x4()

µx2! fb
x2() = µ fa!x2

x2()µ fc!x2
x2()

µ fb!x3
x3() = fb

x2
" x2 , x3()µx2! fb

x2()

µx1! fa
x1() = 1 x1 x2 x3

x4

fa fb

fcµx3! fb
x3() = 1

µ fb!x2
x2() = fb

x3
" x2 , x3()

Candidate for third
and fourth?

Next we pass messages
from root to leaves.

x1 x2 x3

x4

fa fb

fc

µx2! fa
x2() = µ fb!x2

x2()µ fc!x2
x2()

µ fa!x1
x1() = fa

x2
" x1, x2()µx2! fa

x2()

Lets go towards x1 first.
x1 x2 x3

x4

fa fb

fc

µx2! fc
x2() = µ fa!x2

x2()µ fb!x2
x2()

µ fc!x4
x4() = fc

x2

" x2 , x4()µx2! fc
x2()

(similar to previous one)

x1 x2 x3

x4

fa fb

fc

Summary of messages
from root to leaves.

µx3! fb
x3() = 1

µ fb!x2
x2() = fb

x3

" x2, x3()

µx2! fa
x2() = µ fb!x2

x2()µ fc!x2
x2()

µ fa!x1
x1() = fa

x2

" x1, x2()µx2! fa
x2()

µx2! fc
x2() = µ fa!x2

x2()µ fb!x2
x2()

µ fc!x4
x4() = fc

x2

" x2, x4()µx2! fc
x2()

x1 x2 x3

x4

fa fb

fc

An illustrative check

!p x2() = µ fa!x2
x2()µ fb!x2

x2()µ fc!x2
x2()

= fa
x1

" x1, x2()µx1! fa
x1()#

$%
&

'(
fb

x3

" x2 , x3()µx3! fb
x1()#

$%
&

'(
fc

x4

" x2 , x4()µx4! fc
x1()#

$%
&

'(

= fa
x1

" x1, x2()#

$%
&

'(
fb

x3

" x2 , x3()#

$%
&

'(
fc

x4

" x2 , x4()#

$%
&

'(

= fa
x4

"
x3

"
x1

" x1, x2() fb x2 , x3() fc x2 , x4()

= !p x()
x4

"
x3

"
x1

"

Handling observed variables

Usually we have observed variables (e.g., evidence). We simply
clamp those variables to their observed values.

More formally, denote hidden variables by h, and observed ones by v.
Denote the observed value as v̂. For each observed variable, vi ,
with value v̂i , we can introduce factors into the graph

I vi ,!v̂i()= 1 if vi =!v̂i
0 otherwise

!
"
#

$#

Then, p h,v = v̂() = p h,v() I vi ,!v̂i()
i
%

(needs to be normalized to get p h v̂(), but this
is easy since we are doing sum-product.)

Adds factor
nodes, i.e.,

Max-sum algorithm

Method to compute.

xmax = argmax
x

p x()

i.e., p xmax() = max
x

p x()

Recall inference on chains

x1 x2 xN−1 xN

p x() =! 1,2 x1, x2()! 2, 3 x2 , x3()!!!...!!!! N"2,N"1 xN"2 , xN"1()! N"1,N xN"1, xN()

Naive compution of argmax
x

p x()

would evauate the above for each value of x,
and take the max.

Too expensive!!

and

!
xn!2
"

xn!1
" ... ! # n!i,n!i+1 xn!i , xn!i+1()

i=1

n!1

$
x1
" = # n!1,n xn!1, xn()

xn!1
" ... # 3,4 x3, x4()

x3
" # 2,3 x2, x3() !# 1,2 x1, x2()

x1
"

%
&
'

('

)
*
'

+'x2
"

%
&
'

('

)
*
'

+'

%
&
'

('

)
*
'

+'
...

%
&
'

('

)
*
'

+'

xn+1
! ... ! " i, i+1 xi , xi+1()

i=n

N#1

$
xN
!

xN#1

! = " n,n+1 xn , xn+1()!
xn+1
! ... " N#2,N#1 xN#2 , xN#1() !" N#1, N xN#1, xN()

xN
!

%
&
'

('

)
*
'

+'xN#1

!
%
&
'

('

)
*
'

+'
...

%
&
'

('

)
*
'

+'

p xn() = !
xn!2
"

xn!1
" ... ! # n!i, n!i+1 xn!i , xn!i+1()

i=1

n!1

$
x1
"

%

&'
(

)*
!
xn+1
" ... ! # i, i+1 xi , xi+1()

i=n

N!1

$
xN
"

xN!1

"
%

&'
(

)*

Recall speeding up marginalization

What if we could do with max() what we are doing with!?

Helpful facts

First. note that.

max
x

p x() = max
x1

max
x2
... max

xM

p x()

Second, note that.

max ab,ac() = a !max(b,c) (for a ! 0)

Max on a chain

max
x

p x() = 1
Z
max
xn

max
xn!1

max
xn!2

...max
x1

" n!i, n!i+1 xn!i , xn!i+1()
i=1

n!1

#$
%&

'
()
i max

xn+1
max
xn+2

... max
xN

" i, i+1 xi , xi+1()
i=n

N!1

#$
%&

'
()

*
+
,

-
.
/

xn

max
xn!1

max
xn!2

...max
x1

" n!i,n!i+1 xn!i , xn!i+1()
i=1

n!1

#$%&
'
()
=

max
xn!1

" n!1,n xn!1, xn() imax ...max
x3

" 3,4 x3, x4() imax
x2

" 2,3 x2, x3()imax
x1

" 1,2 x1, x2()()()$
%&

'
()

$
%&

'
()

$
%&

'
()

In analogy with marginals on a chain,

where,

and similarly for the part in red.

Max-sum algorithm

Two steps.
 1) Compute the max while remembering certain computations
 2) Compute a value of x that achieves the max

The message passing algorithm for step (1) is clear from the
analog with the “sum-product” algorithm, except that it would
then be called the “max-product” algorithm.

Computing long products looses precision (*), so we switch to
log(), and call it the max-sum algorithm.

(*) Less of an issue with marginalization.

Max-sum algorithm (continued)

Note that

And we have

ln max
x

p x()()() = maxx ln p x()()()

ln max ab,ac()() = max log ab(), log(ac)()
= max ln a() + ln b(), ln a() + ln c()()
= ln a() + max ln b() + ln c()()

(In general, max x + y, x + z() = x + max(y, z))

Can also get this from taking logs of product version,
namely: max ab,ac() = a !max b,c(), for a " 0)

Max-sum algorithm

Working now in analogy with the sum-product algorithm (*)

µ f!x x() = max
x1,x2 ,!...,! xM

ln f x,!x1,!x2,!...,!xM() + µxm! f xm()
m"n fs()\x
#

$

%
&
&

'

(
)
)

and

µx! f x() = µ f!xl
x()

l"n x()\ f
#

*Recall that in sum-product: µ fx!x x()
factor!node
!"# $#

= !...
x1

" !! f x, x1,!...!,!xM()
xM
" µxm! fs

xm()
node!factor
! "# $#m#n fs()\x

$

Max-sum algorithm

Working now in analogy with the sum-product algorithm

For initialization at leaf nodes
µ f!x x() = 0
and
µx! f x() = ln f x()()

Max-sum algorithm

Working now in analogy with the sum-product algorithm

To compute the max using the choosen root node,

ln pmax() = max
x

µs!xs
x()

s"n x()
#

$

%
&
&

'

(
)
)

Max-sum algorithm

Now we need to find an x where p() reaches the max.

This does not have an exact analogy in the sum-product algorithm.

Why we do not know x yet:

The factor-to-node messages takes a distribution for the
maxima over the upstream variables, and multiplies it by the
factor (sum using logs), and reports a new distribution.

We do not yet know which value in the new distribution will
be part of the maximum (it is not necessarily argmax of the
reported distribution).

Max-sum algorithm

Can passing messages backwards find the arg max?

At the root node, which is a product (sum in logs), when we find the
maximum, we can easily record the argmax for that node’s variable, and
it will be a valid for a particular maximizing configuration.

In analogy with sum-product, we might be tempted to send messages
backwards to “finish the job” to get values for the other nodes.

But this can fail if there is more than one maximal configuration.
You can get pieces of each one!
We are only sure that the value is part of some maximal configuration.
You could end up with an inconsistent set of values.

Max-sum algorithm

Adjustment to forward message passing for “backtracking:”

The factor-to-node operations store the dependencies for the
various choices of xi .

Then, once the node-to-factor backtracking expresses a choice,
a consistent set of values for xi for the max can be found.

For example, suppose the root node could choose either setting
its variable to 2 or 3, 2. Then it sends to the incoming nodes,
the value “2”. Those nodes need to know how their incoming
links have maximized to get the value for “2” passed to the
root.

Max-sum algorithm (back-tracking)

In more detail, when we compute

µ f!x x() = max
x1,x2 ,!...,! xM

ln f x,!x1, x2,!...,!xM() + µxm! f xm()
m"n fs()\x
#

$

%
&

'

(
)

*

+
,
,

-

.
/
/

store

0 x() = argmax
x1,x2 ,!...,! xM

ln f x,!x1, x2,!...,!xM() + µxm! f xm()
m"n fs()\x
#

*

+
,
,

-

.
/
/

(This records the downstream choices for any upstream choice of x)

Then, once we know the overall max, we can recover a set of
xi that leads to it by backtracking.

Product (sum in logs) of the incoming
messages (e.g. p(x1) and p(x2)) and
the factor (e.g. p(x3 | x1, x2)).

x1

x3

x5

x4

x2

x3

Two values give the same max. The
root needs to choose one and sends
its choice back towards the leaves.

Look up stored back pointer
for the back-traced value.
This back pointer, , has
indices of the variables, x1
and x2, that correspond to
the chosen max.

Max over all variables except x3.
If there are duplicates (e.g., dark
blue), then we choose one. Each
chosen max (magenta dots) is
associated with a back pointer
for that slice, . ! x()

Max-sum in pictures

Product
(sum in logs)

The stored values for the
argmax() for x3 are now
passed back to the source
of x1 and x2.

! x()

