
Naive Bayes

Suppose categories indexed by c, and features represented
in a vector x.

Assume features in x are independent given the category.

(Feature independence is the “naive” part).

p x c( )  = p xi c( )
i
!

Naive Bayes

p x,c( )  = p c( ) p xi c( )
i
!

Graphical model is: z

x1 xD

c

Naive Bayes

p x,c( )  = p c( ) p xi c( )
i
!

Note that:

The forms of  p xi c( )  need not all be the same (but often are)

If p x c( )  is a Gaussian, then it has diagonal covariance matrix.
(This simplifying assumption is nearly always needed
with Gaussians if the dimension, D, is large).

Naive Bayes

Typically,  p xi c( ) come from training data linked to known
(labeled) classes (supervised learning).

Example (1) fit a univariate Gaussian to each variable, xi ,
for each class, c. 

Example (2), record a histrogram for each variable, xi ,
for each class, c. 



Inference using Naive Bayes

p x c( )  = p xi c( )
i
! (forward model)

p c x( )!"! p x c( ) p c( ) (the Bayes part)

This leaves us with simple, and often very effective
model and associated inference. We combine the 
likelihood p x c( ) with the prior p c( )  over categories.

Naive Bayes for face identification

• Example features
- Location, color, texture, of left eye
- Location, color, texture,  of right eye
- Location, color, texture,  of mouth
- Location, color, texture,  of nose

• We can imagine training these with different facial expressions, lighting 
conditions, etc. 

• Notice that these are not independent. 
• This sort of thing often works pretty well anyway.

• Possible explanation is that, while the model allows for the eyes to be 
different, this rarely occurs in training or testing data. 

Clustering

Clustering is the canonical case of “unsupervised” learning.

Given the data, what are the categories (clusters), c?

(Given a cluster, the features might be independent like 
Naive Bayes, or they might not be).

We will focus on clustering based on statistical models, but
first review clustering in general. 

Why is clustering hard?

• The number of possible clusterings is exponential in the number of data points

• The number of clusters (and a good way to check) is usually not known
• A good distance function between points may not be known
• A good model explaining the existence of clusters may not be known.
• High dimensionality

Main reason

Other important issues



Clustering based on distance measure

• Most common data representation is an N dimensional “feature” vector.
• Most common distance is Euclidian distance.

• Be careful with scaling and units! 
• Probabilistic models can finesse scaling and multiple modalities

• Problems with correlated variables can be mitigated using 
transformations and data reduction methods such as PCA, ICA.

Clustering approaches
• Agglomerative clustering

– initialize: every item is a cluster
– attach item that is “closest”  to a cluster to that cluster
– repeat

• Divisive clustering
– split cluster along best boundary
– repeat recursively

• Probabilistic clustering
– define a probabilistic grouping model
– use statistical inference to fit the model

Simple agglomerative approaches

• Point-Cluster or Cluster-Cluster distance 
– single-link clustering (minimum distance from point to points in clusters 

or among pairs of points, one from each cluster)
– complete-link clustering (maximum) 
– group-average clustering (average)
– (terms are not important, but concepts are worth thinking about)

• Dendrograms
– classic picture of output as clustering process continues



K-Means

• Choose a fixed number of clusters (“K”)

• Choose cluster centers (means) and point-cluster allocations 
(membership) to minimize the error 

• x’s could be any set of features for which we can compute a 
distance (careful with scaling)
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K-Means

• Want to minimize

• Cannot do this optimization by search, because there are too many 
possible allocations.

• Standard difficulty which we handle with an iterative process (chicken 
and egg)
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K-Means algorithm (intuition)
• If we know the cluster centers, the best cluster for each point is easy to 

compute 
– Just compute the distance to each to find the closest

• If we know the best cluster for each point, the cluster centers are also easy to 
compute
– Just average the points in each cluster

• Algorithm
– 1) Guess one of the two.
– 2) Alternatively re-compute the values for each

Guess
the means

Guess 
membership OR

Assume means are fixed. 
Find cluster 
with closest 
mean for 
each 
point

Assume membership is 
fixed. Take averages
 to get cluster 
centers 
(means)

Choose K
K-means flow chart



Notes on K-Means

• K-means is “hard” clustering. This means that each point is completely in 
exactly one cluster 

• What you get is a function of starting “guess” 

• The error goes down with every iteration
– This means you get a local minimum, but not necessarily a global one.

• Unfortunately, the dimension of the space is usually large, and high-
dimensional space has lots of room for local maximum (standard problem!)
– Dimensionality here is K*dim(x)

• Finding the global minimum for a real problem is very optimistic!

you should be able to 
argue why this is true

Clustering using a generative statistical model

Associate each cluster with (usually) the same model type, 
but with different parameters.

Example (Gaussian Mixture Model (GMM)),  
p x c( ) = ! uc ,"c( )

or, assuming feature independence, 

p x c( ) = ! uc ,# c
2
c( )

p x c( )could also be a product of independent multinomials,
or, even a product of different distributions (roll your own!).

Clustering using a generative statistical model

These models are quite straight-forward to apply if we know the 
parameters.

In addition, establishing the model parameters is usually easy if we 
know the correspondence (e.g., we have labeled data). 

(We have already seen both these case with Naive Bayes). 

However, “clustering” implies learning the model without knowing the 
correspondence. 

Doing this is a new kind of inference (missing value problem) that is 
different from max-sum and max-product. 

x

z

Clustering using a generative statistical model

Graphical model                        (and for independent features)

c
z

x1 xD

c

(We saw this one when we 
discussed Naive Bayes)



Inference given a clustering

Given a learned clustering model (either supervised or
unsupervised), we can compute a posterior probability
of which cluster an instance belongs to.

p c x( )! p x c( ) p c( )

Easily normalized since the number of clusters is finite:

p c x( ) = p x c( ) p c( )
p x c( ) p c( )

c
"

Clustering models representing data statistics

p x( ) = p x,c( )
c
!

= p c( ) p x c( )
c
!

What is the distribution of data best described by clusters?
(Example, data coming from a bimodal distribution?)

Generative story:
1) choose a cluster with probability, p(c).
2) sample from p x c( ).
3) rinse and repeat.

Clustering models representing data statistics

p x( ) = p c( ) p x c( )
c
!

Distribution of data described by clusters.

Distribution modeled by 
3 multivariate Gaussians. 

Even if we know the exact model, we 
cannot be sure from the data which 
point comes from which cluster. We 
only have the distribution for this. 
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Learning the parameters from data

For concreteness, assume GMM

Assume K clusters

The goal is to learn mixing coefficients, p(c),  and cluster
parameters for p x c( ) !for all K clusters indexed by c.



Learning the parameters from data

The goal is to learn mixing coefficients, p(c),  and cluster

parameters for p x c( ) !for all K clusters indexed by c.

From previous arguments, given  p x c( ), we know the
distribution over clusters for each data point.

We simultaneously cluster points and learn the cluster model.

Learning the parameters from data

Probability of all observed data will be the objective function. It is:

p xi !( ) = p c( ) p xi c,!c( )
c
"

p xi{ }!( ) = p c( ) p xi c,!c( )
c
"#$%

&
'(i

)          (want this to be large)

or

log p c( ) p xi c,!c( )
c
"#$%

&
'(i

"        (should be large)

Expectation Maximization (EM)

Operationally this is similar to K-means.

Observe that:

If we knew the cluster assignments,
   we could estimate the parameters for p x c( ).

If we knew p x c( ),  we could make cluster

      assignments by computing the distribution p c x( )

Expectation Maximization (EM)

Difference with K-means.

We have distributions over the assignments,  p(c | x).

This leads us to work with expectations.



Guess model 
parameters

Guess distribution 
over correspondence OR

Assume model is fixed. 
Find correspondence  
probabilities (e.g., 
the extent each
point is in 
each cluster).

Assume correspondence 
distribution is fixed. Update 
model parameters 
using max 
likelihood

Initialize
EM flow chart

M E

EM for GMM

 
p(x) = p(c)p

c
! (x | c)!!!!!!!!!where!!!!!!p(x | c) = ! µc ,!c( )

! = !c{ }
And, for multiple points

p( xi{ } !) = p(c)p
c
" (x | c)#

$%
&
'(i

)

This is our objective function.

Assume we have estimates for the probability distribution over 
clusters for each point (the “egg”). Specifically we have: 

p(c | xi ,!
(s ) )       (s indexes interation (step)).

EM for GMM

These are called the responsibilities.

This is the extent to which each cluster explains the point. (Every 
point is in every cluster to some degree).  

(a)

0 0.5 1

0

0.5

1 (b)

0 0.5 1

0

0.5

1 (c)

0 0.5 1

0

0.5

1

Responsibilities illustrated

Points colored according the 
the degree that they are 
explained by the red, green, 
or blue clusters.

Points colored according 
to whether they were 
generated by the red, 
green, or blue clusters 
(normally not known).

Points colored according 
to whether they were 
generated by the red, 
green, or blue clusters 
(normally not known).

Observed points without 
cluster information. 



• We estimate the mean for each cluster naturally by:

• Variances/covariances work similarly

 

µc
(s+1) =

xi !i! p(c | xi ,!c
(s ) )

i=1

n"
p(c | xi ,!c

(s ) )
i=1

n"
     (weighted average)

Iteration (step)

EM for GMM

• Also, intuitively, 

We can sort out the chicken!

EM for GMM

p c( ) =
p c xi ,!

(s )( )
i
"

p c xi ,!
(s )( )

i
"

c
"

=
p c xi ,!

(s )( )
i
"

N

EM for GMM

 

p(c | xi ,!
(s ) ) = " c

(s ) !i! p(xi |!c
(s ) )

" #c
(s ) !i! p(xi |! #c

(s ) )
#c
$       (Note that we select !c

(s ) from !(s ).

where " c
(s ) = p c !c

(s )( )   i.e.,   " c
(s )  is part of !c

(s ).

This is the cluster membership discussed before,

with less formal notation: p c x( )% p c( ) p x c( )

We can do the egg!

Given the parameters (the chicken), the probability that a 
given point is associated with each cluster is computed by:
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EM illustrated



EM (more formally)

Semi-optional technical material alert! 

The formal treatment helps us use EM correctly in more 
complex situations. However, EM algorithms for many 
problems can “guessed at” using intuition.

The more formal treatment is not needed for the homework.

• Assume K clusters. Index over clusters by k, over points by n. 

• New notation for cluster membership:

EM (more formally)

For each point, n, zn is a vector of K values where exactly one 

zn,k = 1, and all others are 0. Note that zn,k
k
! = 1.

• Denote cluster priors by:

• Denote the responsibilities that each cluster has for each 
point by:

EM (more formally)

! zn,k( ) " p zn,k = 1 xn ,#
(s )( ) = $ k ! p xn zn,k = 1,!#k

(s )( )
$ %k ! p xn zn, %k = 1,!# %k

(s )( )
%k
&

 

! k " p zk = 1( )

EM (more formally)

Represent the entire data set of N points, xn ,
as a matrix X with rows xn

T .

Represent the latent variable assignments with a matrix Z.
(For the true assignment, each row is zero except for a single
element that is 1.)

We call Z,X{ }  the complete data set (everthing is known).

The observed data, X{ }, is called the incomplete data set. 



EM (more formally)
We assume that computing the MLE of parameters,

!
argmax log p Z,X !( ){ }{ }   

with complete data is relatively easy.

Recall our intuitive treatment of EM for GMM. If we knew the 
cluster membership, we would know how to compute the means.

Since we did not know the cluster membership we did a 
weighted computation, which happens to be an expectation of 
the complete log likelihood, over the assignment (responsibility) 
distribution. 

EM (more formally)

 

Notice the complexity of the incomplete log likelihood:

log p X !( )( ) = log " k ! p xn !( )
k
#$%&

'
()

nasty sum in log
! "## $##n

#

By constrast, for complete log likelihood we can incorporate the assignment by:

p X,Z !( ) = " k
zn ,k p xn !( ){ }

k
*

n
* zn ,k

So

log p X,Z !( )( ) = zn,k ! log " k( ) + log p xn !( )( )( ){ }
k
#

n
#

(No nasty sum in log; well suited for the expectation calculation). 

EM (more formally)

For the E step, we compute the responsibilities which is straightforward.

Define   Q ! (s+1),! (s )( ) = p Z X,! (s )( )
Z
" !log p X,Z ! (s+1)( )( )

(Expectation of log p X,Z ! (s+1)( )( )  over p Z X,! (s )( )).

The M step then computes   ! (s+1) =argmax
!

Q ! (s+1),! (s )( ){ }

Maximizing Q is generally feasible and corresponds to the
intuitive development.

General EM algorithm

1. Choose initial values for ! (s=1)

(can also do assignments, but then jump to M step). 

2. E step: Evalute p Z X,! (s )( )
3. M step: Evalute ! (s+1) = argmax

!
Q ! (s+1),! (s )( ){ }

where  Q ! (s+1),! (s )( ) = p Z X,! (s )( )
Z
" !log p X,Z ! (s+1)( )( )

4. Check for convergence; If not done, goto 2.  

! At each step, our objective function increases unless it is 
at a local maximum. It is important to check this is 
happening for debugging! 



General EM algorithm

! At each step, our objective function (conditioned on the 
current model) increases unless it is at a local maximum. 
It is important to check this is happening for debugging! 

Recall our objective function for the case of a mixture model:

p X!( )= p k( )p xn !k( )
k
"

n
#

or 

log p X!( )( )= log p k( )p xn !k( )
k
"

$

%
&

'

(
)

n
"

Implementation tip. This is 
conveniently available from the 
computation of responsibilities 
(before normalization).

Evalute ! (s+1) =argmax
!

Q ! (s+1),! (s )( ){ }
where  Q ! (s+1),! (s )( ) = p Z X,! (s )( )

Z
" !log p X,Z ! (s )( )( )

Recall that log p X,Z !( )( ) = zn,k ! log # k( ) + log p xn !k( )( )( ){ }
k
"

n
"

So Q ! (s+1),! (s )( ) = p Z X,! (s )( )
Z
" ! zn,k ! log # k( ) + log p xn !k( )( )( ){ }

k
"

n
"

Deriving the GMM M-step

Q ! (s+1),! (s )( ) = p Z X,! (s )( )
Z
" ! zn,k ! log # k( ) + log p xn !k( )( )( ){ }

k
"

n
"

=! p Z X,! (s )( )
Z
" ! zn,k ! log # k( ) + log p xn !k( )( )( ){ }

k
"

n
"

Deriving the GMM M-step

This exchanging of summing order says that 
instead of summing over points and  clusters for 
all correspondences Z, we sum over all 
correspondences for a given point and cluster. 

The quantity in parentheses only interacts with 
the given point and cluster from the outside. So 
intuitively, most of the sum ver 

 

Q ! (s+1),! (s )( ) = p Z X,! (s )( )
Z
" ! zn,k ! log # k( ) + log p xn !k( )( )( ){ }

k
"

n
"

=! p Z X,! (s )( )
Z
" ! zn,k ! log # k( ) + log p xn !k( )( )( ){ }

inner sum
! "######### $#########k

"
n
"

Deriving the GMM M-step

This exchanging of summing order says that instead of summing over points and  clusters 
for all correspondences Z, we sum over all correspondences for a given point and cluster.  

We will focus on the inner sum. 



 
( )

Z
! "

z3
! !

z2
!

z1
! ( )

zN
!

Z is all possible correspondences. To generate them all more explicitly, we can 
consider the first point. For each possible assignment of the first point, we then 
need all possible combinations of the other points. To get that, we consider all 
possible assignments of the second point, together with all possible 
assignments of the remaining points. This shows: 

p Z •( ) = p zi •( )
zi
!

Further, because the points are independent, we have: 

Note that a sum over zn is short hand for a sum over cluster assignments 
for point n. Hence each of the sums on the right are over clusters. 

 

p Z X,! (s )( )
Z
" !i zn,k i log # k( ) + log p xn !k( )( )( )

inner sum from previous
! "######## $########

= % p z $n X,! (s )( )
$n
% i zn,k i log # k( ) + log p xn !k( )( )( )

zN

"
z2

"
z1
"

(Using the two formulas from the previous page)

 

p Z X,! (s )( )
Z
" !i zn,k i log # k( ) + log p xn !k( )( )( )

inner sum from previous
! "######## $########

= % p z $n X,! (s )( )
$n
% i zn,k i log # k( ) + log p xn !k( )( )( )

zN

"
z2

"
z1
"

= p zn X,! (s )( ) i zn,k i log # k( ) + log p xn !k( )( )( ) ... .... p z $n X,! (s )( )
$n &n
%

zN
"

zn+1

"
zn'1

"
z1
"

All possibilities without point n. 
This entire mess evaluates to unity! 

! "##### $#####zn
"

(Here we move in all the sums that do not interact with 
the function we are taking the expectation over that do 
not interact with the outer n variable. )  

p Z X,! (s )( )
Z
" !i zn,k i log # k( ) + log p xn !k( )( )( )

inner sum from previous
! "######## $########

= % p z $n X,! (s )( )
$n
% i zn,k i log # k( ) + log p xn !k( )( )( )

zN

"
z2

"
z1
"

= p zn X,! (s )( ) i zn,k i log # k( ) + log p xn !k( )( )( ) ... .... p z $n X,! (s )( )
$n &n
%

N
"

zn+1

"
zn'1

"
z1
"

All possibilities without point n. 
This entire mess evaluates to unity! 

! "##### $#####zn
"

= p zn X,! (s )( ) i zn,k i log # k( ) + log p xn !k( )( )( )
zn
"

(As noted, the big sum on the right is unity. It is the 
probability of all possible configurations that do not 
involve point n. Since this covers all cases, it is one.) 



 

p Z X,! (s )( )
Z
" !i zn,k i log # k( ) + log p xn !k( )( )( )

inner sum from previous
! "######## $########

= % p z $n X,! (s )( )
$n
% i zn,k i log # k( ) + log p xn !k( )( )( )

zN

"
z2

"
z1
"

= p zn X,! (s )( ) i zn,k i log # k( ) + log p xn !k( )( )( ) ... .... p z $n X,! (s )( )
$n &n
%

N
"

zn+1

"
zn'1

"
z1
"

All possibilities without point n. 
This entire mess evaluates to unity! 

! "##### $#####zn
"

= p zn X,! (s )( ) i zn,k i log # k( ) + log p xn !k( )( )( )
zn
"

= p zn,k = 1 X,! (s )( ) log # k( ) + log p xn !k( )( )( )
(Here, remember that k is sitting outside the sum. The indicator 
variable zn,k, selects the probability for k from the sum over zn, 
which is a sum over clusters.) 

 

p Z X,! (s )( )
Z
" !i zn,k i log # k( ) + log p xn !k( )( )( )

inner sum from previous
! "######## $########

= % p z $n X,! (s )( )
$n
% i zn,k i log # k( ) + log p xn !k( )( )( )

zN

"
z2

"
z1
"

= p zn X,! (s )( ) i zn,k i log # k( ) + log p xn !k( )( )( ) ... .... p z $n X,! (s )( )
$n &n
%

N
"

zn+1

"
zn'1

"
z1
"

All possibilities without point n. 
This entire mess evaluates to unity! 

! "##### $#####zn
"

= p zn X,! (s )( ) i zn,k i log # k( ) + log p xn !k( )( )( )
zn
"

= p zn,k = 1 X,! (s )( ) log # k( ) + log p xn !k( )( )( )
= ( zn,k( ) log # k( ) + log p xn !k( )( )( )          (definition of ( zn,k( ), the responsibility)

Q ! (s+1),! (s )( ) = p Z X,! (s )( )
Z
" ! zn,k ! log # k( ) + log p xn !k( )( )( ){ }

k
"

n
"

= ! $ zn,k( )! log # k( ) + log p xn !k( )( )( ){ }
k
"

n
"

We need to maximize this with respect to the parameters for each 
cluster, k. Notice that: 

!
!"

k#
Q " (s+1)," (s )( ) = $ z

n,k*( ) !
!"

k#
! log %

k*( ) + log p xn "k*( )( )( )&
'
(

)(

*
+
(

,(n
-

Deriving the M-step

(The values of k not of current interest, i.e., not k*, die)

!
!µk

Q " (s+1)," (s )( ) = # zn,k( )! !!µk

log $ k( ) + log p xn "k( )( )( )%
&
'

(
)
*n

+

= # zn,k( )! !!µk

log p xn "k( )( )( )%
&
'

(
)
*n

+

# zn,k( )! !!µk

log , xn µk ,!-k( )( )( )%
&
'

(
)
*n

+

Example—deriving the GMM M-step



! xn µk ,!"k( ) = 1
2#( )D /2 "k

1/2 exp $ 1
2
xn $ µk( )T "k

$1 xn $ µk( )%
&'

(
)*

log ! xn µk ,!"k( )( ) = log 1
2#( )D /2 "k

1/2

$

%
&

'

(
) *

1
2
xn * µk( )T "k

*1 xn * µk( )

!
!µk

log " xn µk ,!#k( )( ) = #k
$1 xn $ µk( )

Example—deriving the GMM M-step

!
!µk

Q " (s+1)," (s )( ) = # zn,k( )! !!µk

log $ xn µk ,!%k( )( )( )&
'
(

)
*
+n

,

!
!µk

Q " (s+1)," (s )( ) = 0  means that

# zn,k( )!%k
-1 xn - µk( ){ }

n
, = 0     (Inner sigma is a matrix, not a sum).

# zn,k( )! xn - µk( ){ }
n
, = 0           (Multiply by %k

-1)

Example—deriving the GMM M-step

So,    ! zn,k( )! xn " µk( ){ }
n
# = 0

and   µk ! zn,k( ){ }
n
# = ! zn,k( )! xn( ){ }

n
#

and µk =
! zn,k( )! xn( ){ }

n
#

! zn,k( ){ }
n
#

       (same as before)

Example—deriving the GMM M-step

Finding variances/covariances is similar. 

Finding the mixing coefficients is also similar, except we 
also need to enforce that they sum to one. 

(Here the equations for the k’s are coupled).

So we use Lagrange Multipliers.

Example—deriving the GMM M-step



Using Lagrange Multipliers

Now we find stationary points with respect to ! k ,"{ } of

Q # (s+1),# (s )( ) + " ! k
k
$ %1

&
'(

)
*+

Note that differentiating with respect to ", and setting the 
result to zero puts the constraint into the equations. 

But the real problem is doing the optimization under
the constraint.

Using Lagrange Multipliers

From WikiPedia

Using Lagrange Multipliers

From WikiPedia

Using Lagrange Multipliers

 

!f !!g

!f = "!g

So,  ! f # "g( ) = 0

or,   ! f + "g( ) = 0       (negate ")



Using Lagrange Multipliers

Now we find stationary points with respect to ! k ,"{ } of

Q # (s+1),# (s )( ) + " ! k
k
$ %1

&
'(

)
*+

,
,! k

Q # (s+1),# (s )( ) + " ! k
k
$ %1

&
'(

)
*+

-
.
/

0
1
2

= 3 zn,k( )! ,,! k

log ! k( ) + log 4 xn µk ,!5k( )( )( )-
.
/

0
1
2n

$ + "

= 3 zn,k( )! 1
! k

-
.
/

0
1
2n

$ + "

Setting the result to zero,   ! zn,k( )! 1
" k

#
$
%

&
'
(n

) + * = 0

So     " k =
! zn,k( )!{ }

n
)

+*

Summing over k  gives,     1=
! zn,k( )!{ }

n
)

k
)

+*
= N
+*

So, * = +N ,  and " k =
! zn,k( )!{ }

n
)

N
  as before.

• For GMM we need to consider clusters that have essentially one point:

• Easily fixed by adding a constant to the variance (prior).

EM in practice

x

p(x)

• Tying parameters (using GMM as an example)
– We can improve stability by assuming the variances (or 

covariances) for all clusters are the same.
– Updates work as you expect. Instead of multiple 

weighted sums, you just use one big one. 
– But note that one advantage of GMM over K-means is 

that the scale is naturally taken care of, and the clusters 
can have different variances. 

EM in practice



• You must check that the log likelihood increases! 
• A simple way to compute it during an iteration:

EM in practice

Recall our objective function:

p X( )= p k( )p xn k( )
k
!

n
"

Consider how we might compute the responsibilities
# n,k( )$p k( )p xn k( )
(Then normalize once you have them all).

So, make a running sum of the unormalized values 

• Precision problems --> must work with logs
• But we need to exponentiate to normalize --> rescaling tricks

EM in practice

Let  P= pi{ }.

Suppose we want Q= 1
pi

i
! pi{ }

Where we need to use V = log pi( ){ }
and exp pi( )  is too small, and the sum of them might be zero.  

Let M = max log pi( ){ }

Observe that working with "V = log pi( )#M{ }  does the trick.

• Memory problems ---> we can compute means, etc.,  as running 
totals so that we do not need to store responsibilities for all 
points over all clusters.

EM in practice (continued) EM (Straight Forward Implementation)

Loop

Loop over data

Loop over data

E step

M step

State transfer
of size O(N*K)



EM (scalable)

Loop

E step
M step

Loop over data

Initialize

Collect

EM (parallelized)

Loop

E step

M step

Loop over data subset

Initialize

Collect

E step

M step

Loop over data subset

• Maximizing the Q function provided a new parameter 
estimate which increased the likelihood

• Showing this typically uses Jensen’s inequality
– Bishop (§9.4), instead, uses the fact that the KL 

divergence between two distributions is non-negative, 
but showing this uses Jensen’s.

• Given a bounded likelihood, this means the algorithm 
converges to a stationary point
– Typically a local maximum but examples where it is a 

saddle point can be constructed. 

Analysis of EM

• We will sketch the summary provided in the online resource 
“The Expectation Maximization Algorithm: A short tutorial” 
by Sean Borman

• This follows “The EM Algorithm and Extensions” by 
Geoffrey McLachlan and Thriyambakam Krishnan.

• See also Bishop (§9.4)

Analysis of EM



From “The Expectation Maximization 
Algorithm: A short tutorial” by Sean Borman

More generally, if f  is convex, then, for

!i " 0,   and  !i
i
# = 1

we have

f xi!i
i
#$%&

'
()
* !i f

i
# xi( )

(Jensen's inequality)

Result from calculas (prove via mean value theorem)

If f  is twice differentiable on [a,b] and !!f " 0  on [a,b],  
then f (x) is convex on [a,b].

Notice that f x( ) = ! log x( )  is convex

Proof?

"f x( ) = ! 1
x

""f x( ) = 1
x2



f xi!i
i
"#$%

&
'(
) !i f

i
" xi( )     (Jensen's inequality)

log xi!i
i
"#$%

&
'(
* !i log

i
" xi( )       (– log(x) is convex)

From “The Expectation Maximization 
Algorithm: A short tutorial” by Sean Borman

In EM, we seek !  to maximize  L !( ) = lnP X !( )

Suppose at step n we have L !n( )

From “The Expectation Maximization 
Algorithm: A short tutorial” by Sean Borman

Jensen’s

ln P X !n( ) = lnP X !n( )P z X,!n( )
z
"

because P X !n( )  does not depend on z, 
and P z X,!n( )

z
" = 1 From “The Expectation Maximization 

Algorithm: A short tutorial” by Sean Borman



From “The Expectation Maximization 
Algorithm: A short tutorial” by Sean Borman
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