
Sequential data

Much of this section follows Bishop chapter 13 (posted)

See also Murphy chapters 17 and 18

Sequential data

Sequential data is everywhere. 

Examples:
spoken  language (word production)
written language (sentence level statistics)
weather
human movement
stock market data

Sequential data

Graphical models for such data?

The complexity of the representation seems to increase with 
time. 

Observations over time tend to depend on the past.

We can simply life by assuming that the distant past does 
not matter. 

If we assume that history does not matter other than the immediate 
previous entity, we have a first order Markov model.

If what happens now depends on two previous entities, we have a 
second order Markov model.  
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x1 x2 x3 x4

x1 x2 x3 x4

Markov chains

First order

Second order

Zeroth order



Temporal statistical clustering

In sequence data,  cluster membership can have temporal 
(or sequential) structure. 

The data comes from the current cluster (as usual), but 
what is the next cluster? 

Example, rain and sleet come from “stormy” and sunshine 
from “fair weather”.

But now, our hidden cluster variables are what depends on 
the past. The previous “state” represents all history.

zn−1 zn zn+1

xn−1 xn xn+1

z1 z2

x1 x2

Temporal statistical clustering

Hidden Markov Model (HMM).

The particular state encodes the important part of history.

Temporal statistical clustering

p xn zn( )

Once you know your cluster, things are easy.

But the cluster is now changing over time. 

Markovian assumptions

zn+1 ! zn"1 zn
zn−1 zn zn+1

xn−1 xn xn+1

z1 z2

x1 x2

As before, if the current state depends on only the previous 
state, we have a first order Markov model. 

The basic HMM is like a mixture model, with the mix of 
mixture components being used for the current observations 
depends on the last mixture component.



Markovian assumptions

Represent each component as a “state”.

Then, for first order Markov models, this leads to the 
concept of “transition” probabilities. 

Ajk ! p znk = 1 zn", j = 1( )

0 # Ajk #1     and    Ajk
k
$ = 1

The random variable, z, is a vector over K possible states (e.g., 
two for stormy vs fair-weather), for each time point. 
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Transition matrix representation
(Not a graphical model)

Starting state

Our HMM will be a generative model, so we need to 
know how to start. 

! k " p z1k = 1( )

with 0 # ! k #1  and  ! k
k
$ = 1 k = 1 k = 2 k = 3
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Left to right HMM

Constrain state number to increase

(State 
transition 
diagram)



k = 1

k = 2
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Left to right HMM

Even more constrained, left to right HMM with single state jumps.

(Lattice 
diagram)

HMM parameter summary

! = " ,A,#{ }

"    is probability over initial states

A  is transition matrix

#    are the data emmission probabilities
     (e.g., means of Gaussians)

Data distribution from an HMM

p X !( )   is a marginalization over Z. 

p X,Z !( ) = ?

Data distribution from an HMM

p X,Z !( ) = p z1 "( ) p zn zn#1,!A( )
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(complete data, i.e., we can generate from this).

An HMM is specified by:  ! = " ,A,#{ }
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Data distribution from an HMM

Transition probability to another state is 5%

Classic HMM computational problems

Given data, what is the HMM (learning).

Given an HMM, what is the probability distribution of 
states for each state variable (zn in our notation).

Given an HMM, what is the most likely state sequence for 
some data?

Learning the HMM (sketch)

If we know the state distributions, we can 
compute the parameters.

If we know the parameters, we can compute the state 
distributions (provided we know how to solve the 
second problem).

Recall the General EM algorithm

1. Choose initial values for ! (s=1)

(can also do assignments, but then jump to M step). 

2. E step: Evalute p Z X,! (s )( )
3. M step: Evalute ! (s+1) = argmax

!
Q ! (s+1),! (s )( ){ }

where  Q ! (s+1),! (s )( ) = p Z X,! (s )( )
Z
" !log p X,Z ! (s+1)( )( )

4. Check for convergence; If not done, goto 2.  

! At each step, our objective function is increases unless it is 
at a local maximum. It is important to check this is 



EM for HMM (sketch)

In the simple clustering case (e.g., GMM), the E step was 
simple. For HMM it is a bit more involved.

The M step works a lot like the GMM. Consider it first. 

EM for HMM (sketch)
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Remember our “indicator variable” notation. Z is a particular assignment of 
the missing values (i.e., which cluster the HMM was in at each time. For 
each time point, i, one of the values of zn is one, and the others are zero. So, 
it “selects” the factor for the particular state at that time.  

EM for HMM (sketch)
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M step for HMM

We assume the E step computed distributions for

The degree each state explains each data 
point (analogous to GMM responsibilities).

The degree that the combination 
of a state, and a previous one 
explain two data points.

! zn( ) = p zn X,"
(s )( )

! zn"1, zn( ) = p zn"1, zn X,#
(s )( )

“xi”



EM for HMM (sketch)

log p X,Z !( )( ) =
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We define

! zn( ) = p zn X,"
(s )( )

# zn$1, zn( ) = p zn$1, zn X,"
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“xi”

EM for HMM (sketch)
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By analogy with the GMM

Q ! (s+1),! (s )( ) = p Z ! (s )( )
z
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EM for HMM (sketch)

Doing the maximization using Lagrange multipliers gives us

! k =
" z1k( )
" z1 #k( )

#k
$

Ajk =
% zn&1, j , znk( )

n=2
$

% zn&1, j , zn #k( )
n=2
$

#k
$

Much like the GMM. Taking the partial 
derivative for !k kills second and third terms.

EM for HMM (sketch)

The maximization of p xn !( )  is exactly the same as the mixture model.

For example, if we have Gaussian emmisions, then 

µk =
xn " znk( )

n
#

" znk( )
n
#



E step for EM for HMM

Computing the E step is a bit more involved.

Recall that in the mixture case it was easy because we 
only needed to consider the relative likelihood that each 
cluster independently explain the observations.

However, here the sequence also must play a role.  

zn−1 zn zn+1

xn−1 xn xn+1

z1 z2

x1 x2

Graphical model for the E step

Note that our task is to compute marginal probabilities

Computing marginals in an HMM

Various names, flavors, notations, ...

Forward-Backward algorithm

Alpha-beta algorithm

Sum-product for HMM 

(Bishop also says “Baum Welch” but that is a 
synonym for the EM algorithm as whole). 

Alpha-beta algorithm

! zn( ) = p zn X( )

=
p X zn( ) p zn( )

p X( )

=
p x1,...., xn zn( ) p xn+1,...., xN zn( ) p zn( )

p X( )

=
p x1,...., xn , zn( ) p xn+1,...., xN zn( )

p X( )

=
" zn( )# zn( )

p X( ) Where we define
! zn( ) = p x1,...., xn , zn( )
" zn( ) = p xn+1,...., xN zn( )

zn−1 zn zn+1

xn−1 xn xn+1

z1 z2

x1 x2



! zn( ) = p x1,...., xn , zn( )
= p x1,...., xn zn( ) p zn( )
= p xn zn( ) p x1,...., xn"1 zn( ) p zn( )
= p xn zn( ) p x1,...., xn"1, zn( )
= p xn zn( ) p x1,...., xn"1, zn"1, zn( )

zn"1
#

= p xn zn( ) p x1,...., xn"1, zn zn"1( )
zn"1
# p zn"1( )

= p xn zn( ) p x1,...., xn"1 zn"1( )
zn"1
# p zn zn"1( ) p zn"1( )

= p xn zn( ) p x1,...., xn"1, zn"1( )
zn"1
# p zn zn"1( )

= p xn zn( ) ! zn"1( )
zn"1
# p zn zn"1( ) (definition of          )! zn( )

(definition of “|”)

(definition of “|”)(definition of “|”)

(marginal)

(conditional independence)

(definition of “|”)

(definition of “|”)

(conditional 
independence)

Expressing alpha recursively
zn−1 zn zn+1

xn−1 xn xn+1

z1 z2

x1 x2

! zn( ) = p xn zn( ) ! zn"1( )
zn"1

# p zn zn"1( )

This is a recursive evaluation of alpha. So we can compute all
of them easily if we know the first one, ! z1( ).

! z1( ) = p x1, z1( )
= p z1( ) p x1 z1( )         (this is a K dimensional vector for fixed x1)

! z1( )k = " k p x1 #k( )

(we defined ! zn( ) = p x1,...., xn , zn( )  )

Expressing alpha recursively
zn−1 zn zn+1

xn−1 xn xn+1

z1 z2

x1 x2

Alpha-beta algorithm

! zn( ) = ! zn+1( )
zn+1
" p xn+1 zn+1( ) p zn+1 zn( )

Similarly, we can derive a recurrence relation for beta 

Alpha-beta algorithm

! zn( ) = ! zn+1( )
zn+1
" p xn+1 zn+1( ) p zn+1 zn( )The details for 



Alpha-beta algorithm

! zn( ) = ! zn+1( )
zn+1
" p xn+1 zn+1( ) p zn+1 zn( )

Our recurrence relation for beta 

We can compute the betas if we know the last one. 

p zN X( ) = ! zN( )" zN( )
p X( )

=
p X, zN( )" zN( )

p X( )
= p zN X( )" zN( )

So  " zN( ) = 1

(we defined ! zn( ) = p x1,...., xn , zn( )  )

Alpha-beta algorithm

Given the alphas and betas, we can compute all the 
quantities we need for the E step.

! zn( ) = " zn( )# zn( )
p X( )        (our definition)

We know that ! zn( )
zn
$ = 1

so    
" zn( )# zn( )

p X( )zn
$ = 1

and  p X( ) = " zn( )# zn( )
zn
$

We do not need p X( )  for EM, but it is the likelihood which we

want to monitor (p X( ) = p X % (s )( )).

Alpha-beta algorithm

Given the alphas and betas, we can compute all the 
quantities we need for the E step.

(in Bishop)

Computing marginals, version two

We can apply sum-product to our E step graph.

zn−1 zn zn+1

xn−1 xn xn+1

z1 z2

x1 x2



χ ψn

g1 gn−1 gn

z1 zn−1 zn

x1 xn−1 xn

Factor graph

zn−1 zn zn+1

xn−1 xn xn+1

z1 z2

x1 x2

(Directed graph for reference)
h fn

z1 zn−1 zn

Simplified factor graph

χ ψn

g1 gn−1 gn

z1 zn−1 zn

x1 xn−1 xn

Since we condition on all the x’s, we can simplify the graph 
by treating the emissions as constants, and putting them into 
the factors for the z’s to get a simple chain.

(Canonical factor graph 
from previous slide)

h fn

z1 zn−1 zn

Review of sum-product concepts

The marginal for each node is a product of the incoming messages.

This is analogous to setting up the marginal as a product of alpha 
and beta factors in the previous treatment.

Since we have a chain, this is just two messages, one coming from 
the left, the other from the right. 

To compute all marginals, we pass the left and right messages from 
one end to the other. 

h fn

z1 zn−1 zn

Sum-product for HMM

 

h = p z1( ) p x1 z1( )
extra for the
nodes we
pruned

!"# $#



h fn

z1 zn−1 zn

Sum-product for HMM

h = p z1( ) p x1 z1( )

 

fn = p zn zn!1( ) p xn zn( )
extra for
pruned
nodes

!"# $#

h fn

z1 zn−1 zn

Sum-product for HMM

The nodes all have at most two links (it is a chain) so they 
just pass the incoming message to the outgoing link.

i.e.,    µ fn!zn
zn( ) = µ fn! fn+1

zn( )
The nodes also (metaphorically) is where we think of the 
messages being stored if we are computing multiple 
marginals (which we are in this case).

h fn

z1 zn−1 zn

Sum-product for HMM

Factor node actions on left to right messages

µ fn! fn+1
zn( ) = fn zn"1, zn( )

zn"1
# µ fn"1! fn

zn"1( )

The first message is 

h = p z1( ) p x1 z1( ) = p x1, z1( ) =! z1( )

h fn

z1 zn−1 zn

Sum-product for HMM

If we identify  µ fn! fn+1
zn( ) =" zn( )

! zn( ) = fn zn"1, zn( )
zn"1
# ! zn"1( )

= p zn zn"1( ) p xn zn( )
zn"1
# ! zn"1( )

= p xn zn( ) p zn zn"1( )
zn"1
# ! zn"1( )



h fn

z1 zn−1 zn

Sum-product for HMM

Factor node actions on right to left messages

µ fn+1! fn
zn( ) = fn+1 zn , zn+1( )

zn+1
" µ fn+2! fn+1

zn+1( )

Identify  ! zn( ) " µ fn+1# fn
zn( )  to get

! zn( ) = fn+1 zn , zn+1( )
zn+1
" ! zn+1( )

h fn

z1 zn−1 zn

Sum-product for HMM

Identify  ! zn( ) " µ fn+1# fn
zn( )  to get

! zn( ) = fn+1 zn , zn+1( )
zn+1
" ! zn+1( )

Recalling that  fn+1 = p zn+1 zn( ) p xn+1 zn+1( )
! zn( ) = p zn+1 zn( )

zn+1
" p xn+1 zn+1( )! zn+1( )

Sum-product for HMM

! zN( ) = 1

! zn( ) = p xn zn( ) p zn zn"1( )
zn"1
# ! zn"1( )

We have re-derived the alpha-beta version of forward-backward

Forward ! z1( ) = p z1( ) p x1 z1( )

Backward
! zn( ) = p zn+1 zn( )

zn+1
" p xn+1 zn+1( )! zn+1( )

Sum-product for E step in the HMM 
learning problem (review)

Given  all  ! zn( )   and  " zn( )

! zn( ) = " zn( )# zn( )
p X( )

p X( ) = " zn( )# zn( )
zn
$

! zn"1, zn( ) = # zn"1( ) p xn zn( ) p zn zn"1( )$ zn( )
p X( )



Rescaled alpha beta (Bishop, 13.2.4)

The alpha-beta algorithm has similar precision problems to the 
ones for EM where we discussed the fix of scaling log 
quantities by the max, before exponentiation for normalizing.

One way to handle this is to reformulate the alpha-beta 
algorithm in terms of:

!̂ zn( ) = p zn x1,..., xn( ) = ! zn( )
p x1,..., xn( )

!̂ zn( ) = p xn+1,..., xN zn( )
p xn+1,..., xN x1,..., xn( )

Rescaled alpha beta (Bishop, 13.2.4)

!̂ zn( ) = p zn x1,..., xn( ) = ! zn( )
p x1,..., xn( )

Let  cn = p xn x1,..., xn"1( )
and note that p x1,..., xn( ) = cm

m=1

n

#   . Then

cn!̂ zn( ) = p xn zn( ) !̂ zn"1( )
zn"1

$ p zn zn"1( )
and we get cn  as the normalizer of the RHS.

(See Bishop for the betas). 

✓

Classic HMM computational problems

Given data, what is the HMM (learning).

Given an HMM, what is the distribution over the state 
variables. Also, how likely are the observations, given the 
model. 

Given an HMM, what is the most likely state sequence for 
some data?

✓

Viterbi algorithm (special case of max-sum)

Forward direction is like sum-product, except
We take the max instead of sum
We use sum of logs instead of product
We remember incoming variable values that give max (*)

Backwards direction is simply backtracking on (*).

Recall max-sum



Recall simplified factor graph

h fn

z1 zn−1 zn

h = p z1( ) p x1 z1( ) fn = p zn zn!1( ) p xn zn( )

Left to right messages

! zn( ) = log xn zn( ) +max
zn"1

log p zn zn"1( ) +! zn"1( )( ){ }
! z1( ) = log p z1( )( ) + log p x1 z1( )( )

Intuitive understanding

h fn

z1 zn−1 zn

! zn( ) = log xn zn( ) +max
zn"1

log p zn zn"1( ) +! zn"1( )( ){ }
Consider all possible paths to each of the k states for time n. 

The message encodes the probabilities for the maximum 
probability path for each of the K states.

EG, if you are in state k, this records is the probability of 
being there by via the maximal probably sequence. 

Intuitive understanding

h fn

z1 zn−1 zn

! zn( ) = log xn zn( ) +max
zn"1

log p zn zn"1( ) +! zn"1( )( ){ }

The message is the vector of probabilities for the maximum 
probability path for each of the K states.

For each state k 
Consider getting there from 
each previous state k’ 

! zn( ) = log xn zn( ) +max
zn"1

log p zn zn"1( ) +! zn"1( )( ){ }

The message is the vector of probabilities for the maximum 
probability path for each of the K states.

For each state k 

We can see that this is the new maximum

For Viterbi, we need to remember the previous state, k’, for each k. 

Consider getting there from 
each previous state k’ 



Intuitive understanding

The max path is 
shown (but we only 
know it when we get 
to the end).

To find the path, we 
need to chase the 
back pointers.

k = 1

k = 2

k = 3

n− 2 n− 1 n n + 1

Final comments on learning

In many applications, the states have specified meaning, 
and are available in training data, so EM is not needed.

(Most authors still call this an HMM because states are 
hidden when the model is used). 

We described training the HMM based on a single data 
sequence, but often multiple sequences that come from the 
same HMM are used (modifying the algorithm is very 
straightforward). 

Two HMM examples (specified states)

Domain is SLIC (Semantically Linked Instructional Content).

1) Temporal information for matching video frames to slides.

2) Aligning noisy speech transcripts with slides.

Matching slides to video frames



Our state sequence 
corresponds to what 
slide is being shown.

A12

A23

A31

A21

A32

A13

A11

A22

A33

k = 1

k = 2

k = 3
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Matching slides to video frames

From image matching

p X,Z !( ) = p z1 "( ) p zn zn#1,!A( )
n=2

N
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Matching slides to video frames

p X,Z !( ) = p z1 "( ) p zn zn#1,!A( )
n=2

N

$%
&'

(
)*

p xm zm ,!+( )
m=1

N

$

p zn zn!1,!A( ) = f zn ! zn!1( )
We assume that only the jump matters. IE, going from slide 
6 to 8 has the same chance of going from 10 to 12. 

encodes slide jump statistics.

p z1 !( ) p zn zn"1,!A( )
n=2

N

#$
%&

'
()

says how likely a sequence is, 
without looking at the images. 

Matching slides to video frames

Why bother?

Mistakes in speech transcripts can be corrected.
Speech transcripts are noisy and to poorly on jargon
But jargon words often appear on slides.

We can highlight or auto-laser-point what the speaker is 
pointing to

We can improve close-captioning. 

Aligning speech to slides



A reasonable model for some speakers is that they say some 
approximation of their bullet points, with some extra stuff 
before and after.

Automated speech recognizers try to produce results that are 
plausible on a phoneme level. 

If a slide word is used, its phoneme sequence will likely be 
approximated in the phonemes in the speech transcript.

We can calibrate the phoneme “confusion matrix.”

Aligning speech to slides

We assume that going backwards does not happen.

We have an HMM state for each slide word 

We also have an HMM state for emitting phonemes between 
slide words. 

Aligning speech to slides

Improving and Aligning Speech with Presentation Slides
Ranjini Swaminathan, Michael E.Thompson, Sandiway Fong, Alon Efrat and Kobus Barnard

University of Arizona
Arnon Amir
IBM Almaden

ABSTRACT
•Objective: Correct and align automatically generated speech tran-
scripts of talks and lectures with text from the accompanying pre-
sentation slides. Enhance the capabilities of a system like SLIC
(Semantically Linked Instructional Content) that hosts a variety of
lectures, in the following ways:
−Corrected transcripts: Improved access to lectures for users with
disabilities.

−Search: Better indexing of important terms that can be used for
search.

−Captioning: Enhanced video comprehension.
•Example: Extract from a talk illustrating transcript correction. Words
in red are counted as corrections.
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Speech Transcript

Phonemes

Slide word 
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Alignment 

Search CaptionsCorrection
Transcript 

CHALLENGES
Automated Speech Recognition (ASR) systems face two main chal-
lenges when integrated with a system like SLIC:
•Technical terms: Outside the scope of the ASR vocabulary resulting
in transcript errors.

•Different speakers: Difficult to train the ASR individually for the
widely varying accents, tones and mannerisms.

APPROACH
•What: Slide words rich in technical vocabulary.
•Why: Transcript errors are phonetically similar to slide words.
•How: Align phonemes from slide words and transcript words for
error location and correction.

•Example:

Sequential model aligns error sequence

Speaker says : maliciousness

ASR produces: my dishes nests

Slide word : maliciousness

m ay d ih sh ah z n eh s t

m ah l ih sh ah s n ah s
with slide word phoneme sequence

•Propagate changes: Propagate the phoneme pattern corrections
across other parts of the talk.

• Improved search: Find the corrected word maliciousness else-
where in the transcript even where it is not a slide word.

SEQUENTIAL ALIGNMENT MODEL
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•Slide word phonemes from each test slide modeled as a single Hid-
den Markov Model(HMM).

•Slide word SWi to slide word SWj and non-slide word NSWi to
non-slide word NSWj transitions are modeled as Poisson distribu-
tions.

•Observation probabilities are phoneme confusion probabilities.
•Compute Viterbi path of phonemes most likely to have generated
the observed test phoneme sequence.

EVALUATION AND RESULTS
•Accuracy Score: Number of correct words in the (corrected) tran-
scripts.
−Obtained by aligning ground truth data with the transcript.
−Some corrections are bad (right word in transcript substitued by
wrong slide word).

−High score =⇒ Better readability.
−Average improvement of ∼ 2% over six talks.
•Alignment Score: Number of slide words aligned with the (cor-
rected) transcripts.
−High score =⇒ Better indexing and captioning.
−Average improvement of ∼ 14% over six talks.

SUMMARY AND FUTURE WORK

Slide words can be used to improve ASR generated transcripts to
improve the overall video viewing experience and access to technical
lectures and talks. Future work will include
•Testing different transition models for alignment and slide transi-
tions.

• Integrating simple language models to choose between alternate
forms of words (-ed,-ing).

•Using laser pointer cues to improve alignment.

REFERENCES
•The SLIC browsing system. (http://slic.cs.arizona.edu)
• IBM Hosted Transcription Service(build 08/05/2009). (http://

antemural.watson.ibm.com/SLWeb).
•Y.Chen and W.J Heng, Automatic synchronization of speech tran-
script slides in presentation, In Proceedings of ISCAS, 2003.

•Q.Fan, K.Barnard, A.Amir, A.Efrat and M.Lin, Matching slides to
presentation videos using SIFT and scene background matching, In
Proceedings of 8th ACM SIGMM International Workshop on MIR,
2006.

Improving and Aligning Speech with Presentation Slides
Ranjini Swaminathan, Michael E.Thompson, Sandiway Fong, Alon Efrat and Kobus Barnard

University of Arizona
Arnon Amir
IBM Almaden

ABSTRACT
•Objective: Correct and align automatically generated speech tran-
scripts of talks and lectures with text from the accompanying pre-
sentation slides. Enhance the capabilities of a system like SLIC
(Semantically Linked Instructional Content) that hosts a variety of
lectures, in the following ways:
−Corrected transcripts: Improved access to lectures for users with
disabilities.

−Search: Better indexing of important terms that can be used for
search.

−Captioning: Enhanced video comprehension.
•Example: Extract from a talk illustrating transcript correction. Words
in red are counted as corrections.
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If the same mistake is made later, where the word is not 
on the slide, we can propagate the correction.

Aligned speech for correction



State space models 

• Making some use of Murphy, chapter 18, as well as Bishop 13

• State space models are Like HMMs except that the states are 
continuous variables

• Example
– A kicked soccer ball traveling under the influence of gravity (ignore air 

friction for now---this soccer match is on the moon). 
– One representation of state is position, velocity, and acceleration (all 

these are continuous variables)

State space models 

• Notation
– At a time, t, the state vector is zt  

– At each (discrete) time point, we make measurements yt   
– The system could also be influenced by a time varying control 

signal, which we will ignore in this course.

zt = g zt!1," t( )
yt = g zt ,# t( )
where " t  is the "system noise" and 
# t  is the "observation noise"

Linear dynamical systems (LDS) 

• Special case of state-space models where the transition 
function g() is linear, and all random processes are Gaussian
– Also known as linear-Gaussian SSM (LG-SSM)

     

zt = Atzt!1 + " t       where  " t ! N (0,Qt )  and A is a transition matrix
yt = Ctzt +# t        where  # t ! N (0, Rt ) 
where " t  is the "system noise" and  # t  is the "observation noise"

Often we assume that the parameters do not change over time. 
This is known as a stationary model. Here, 
At = A      Ct = C       Qt = Q      Rt = R      

Linear dynamical systems (LDS) 

• For example, let z be the position in 2D of a hockey puck 
on the ice, moving with constant velocity. 

• What is A?  



Linear dynamical systems (LDS) 

• For example, let z be the position in 2D of a hockey puck 
on the ice, moving with constant velocity. 
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Ignoring noise, we have

Xt = Xt!1 +Vt!1 i "t

Vt = Vt!1 +Vt!1 i "t    

Linear dynamical systems (LDS) 

• For example, let z be the position in 2D of a hockey puck 
on the ice, moving with constant velocity. 

• What is A?  

 

Ignoring noise, we have

Xt = Xt!1 +Vt!1 i "t

Vt = Vt!1 +Vt!1 i "t    
A =
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Linear dynamical systems (LDS) 

• For example, let z be the position in 2D of a hockey puck 
on the ice, moving with constant velocity. 

• If the ice is rough, then z might be buffeted about. Then our 
system noise component becomes relevant 

• (sometimes called random acceleration model)

 

Xt = Xt!1 +Vt!1 i "t  +  # t

Vt = Vt!1 +Vt!1 i "t   +  # t

Linear dynamical systems (LDS) 

• Finally, the observations are a linear function off the state 
variable, with added Gaussian noise. But perhaps we only 
measure position. Then   

yt = C zt +! t

Where   C= 1 0 0 0
0 1 0 0

"
#$

%
&'



LDS computational problems

Given data, what is the LDS (learning).

Given an LDS, what is the distribution over the state 
variables. Also, how likely are the observations, given the 
model. 

Unlike a general HMM, in the Gaussian posterior for LDS, 
means the most likely state sequence for the data is simply 
the most likely states computed from the previous.

LDS computational problems

Learning the LDS can be accomplished by EM in analogy 
with HMM, as well as other means.

Traditionally, given an LDS, the distribution over the 
state variables is computed using the Kalman filter and the 
Kalman smoother (like alpha and beta respectively). 

Conventionally, the Kalman filter is analogous to computing
the rescaled alphas

!̂ zn( ) = p zn x1,..., xn( ) = ! zn( )
p x1,..., xn( )

and the Kalman smoother is analogous to computing the products

" zn( ) = !̂ zn( )#̂ zn( )

Recall that #̂ zn( ) = p xn+1,..., xN zn( )
p xn+1,..., xN x1,..., xn( )

The complete log likelihood

In analogy with HMM, we have

    

p X ,Z !( ) = p z1( ) p zn zn"1( )
n=2

N
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%
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Manipulating Gaussians

Recall that for multivariate Gaussians, if we partition the 
variables into two sets, x and y, then:

     

p x y( ) ! N ( )

p x( ) = p x,y( )
y
! ! N ( )

Manipulating Gaussians

In addition, if 

then

     

p x( ) = N x µ ,!"1( )
p y x( ) = N y Ax + b,L"1( )

p x,y( ) = p x( ) p y x( ) ! N ( )

Manipulating Gaussians

More specifically (from Bishop p. 91), if

then

where

    

p x( ) = N x µ ,!"1( )
p y x( ) = N y Ax + b,L"1( )
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Kalman filtering/smoothing

Using these rules, you can easily convince yourself that the 
joint probability of all the LDS variables is one big Gaussian.

The filtering/smoothing messages (alpha/beta) enable fast 
computation of the marginals.

We will do the alphas briefly



Kalman filtering

In analogy with the rescaled version of the alpha/beta algorithm:

    

cn!̂ zn( ) = p xn zn( ) !̂ zn"1( )# p zn zn"1( )dzn"1

Denote !̂ zn( ) = N zn µn ,Vn( )  to get 

cnN zn µn ,Vn( ) = N xn Czn ,$( ) N zn Azn"1( )# N zn"1 µn"1,Vn"1( )dzn"1

= N xn Czn ,$( )N zn Aµn"1,Pn"1( )

where       Pn"1 = AVn"1A
T + %    , using rules about manipulating Gaussians.

Kalman filtering

Applying Gaussian manipulations and Matrix inversion 
formulas (see Bishop page 696):

    

µn = Aµn!1 +K n xn !CAµn!1( )
Vn = I !K nC( )Pn!1

cn = N xn CAµn!1,CPn!1C
T + "( )

where      K n =  Pn!1C
T CPn!1C

T + "( )!1

(This is the Kalman gain matrix)

Kalman filtering

For completeness:

    

µ1 = Aµ0 +K1 x1 !Cµ0( )
V1 = I !K1C( )V0

c1 = N x1 Cµ0 ,CV0C
T + "( )

where      K1 =  V0C
T CV0C

T + "( )!1

Kalman filtering

Despite the tedious details, the result is somewhat intuitive. 
Consider the update of the mean:

The new mean is the propagated previous one, with a correction 
for the new evidence. 

The Kalman gain matrix is a factor of the relation between state 
variables and observations (C), and the variances. 

    

µn = Aµn!1

Believing the model,
ignoring the observation

! +K n xn ! CAµn!1

Where we think we 
should see xn
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Kalman filtering/smoothing

Kalman filtering by itself makes sense if you are tracking an object on-
line and in real time. 

However, the future observations can improve the estimates made by 
only considering the past.

The second pass computes the posterior as function of both.

This is the “smoother” which is analogous to the beta pass. 

For details see the rest of Bishop 13.3.1.

    

µn = Aµn!1

Believing the model,
ignoring the observation

! +K n xn ! CAµn!1

Where we think we 
should see xn
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