
Sampling based inference

• Resources.
– Bishop, chapter 11
– Koller and Friedman, chapter 12
– Andrieu et al. (linked on lecture page).

• Koller and Friedman uses “particles” terminology 
instead of “samples”.

Sampling based inference

• We have studied two themes in inference.
– Marginalization / expectation / summing out or integration
– Optimization

• Two flavors of activities
– Fitting (inference using a model)
– Learning (inference to find a model)

• These activities are basically the same in the generative 
modeling approach.

Motivation for sampling methods

• Real problems are typically complex and high dimensional.

• Example, images as evidence for stuff in the world 

Motivation for sampling methods

• Real problems are typically complex and high dimensional.

• Suppose that we could generate samples from a distribution 
that is proportional to one we are interested in. 

 

Typical case we are often interested in is  p ! D( )

p ! D( ) = p !( ) p D !( )
p D( )

Consider  !p z( ) = p !( ) p D !( )



Motivation for sampling methods

• Generally, ! lives in a very high dimensional space.

• Generally, regions of high           is very little of that space. 

• IE, the probability mass is very localized.

• Watching samples from          should provide a good 
maximum (one of our inference problems)

  !p z( )

  !p z( )

Motivation for sampling methods (II)

• Now consider computing the expectation of a function  
over           . 

• Recall that this looks like 

• How can we approximate  or estimate E?  

 p z( )
 f z( )

Ep(z ) f[ ] = f z( )
z
! p z( )dz

Motivation for sampling methods (II)

• Now consider computing the expectation of a function  
over           . 

• Recall that this looks like 

• A bad plan for computing E: 

 p z( )
 f z( )

Ep(z ) f[ ] = f z( )
z
! p z( )dz

Discretize the space where z lives into L blocks

Then compute Ep(z ) f[ ] ! 1
L

p z( ) f z( )
l=1

L

"

Motivation for sampling methods (II)

• Now consider computing the expectation of a function  
over           . 

• Recall that this looks like 

• A better plan, assuming we can sample  

 p z( )
 f z( )

 

Given independant samples z(l )  from !p z( )

Estimate    Ep(z ) f[ ] ! 1
L

f z( )
l=1

L

"

Ep(z ) f[ ] = f z( )
z
! p z( )dz

  !p z( )



 Challenges for sampling

 

In real problems sampling p z( )   is very difficult.

We typically do not know the normalization constant, Z. 
(So we need to use  !p z( )).

Even if we can draw samples, it is hard to know if (when)
they are good, and if we have enough of them. 

Evaluating !p z( )  is generally much easier (although, it can 
also be quite involved). 

 Sampling framework

 

We assume that sampling from !p z( )  is hard, but that 
evaluating !p z( )  is relatively easy. 

We also assume that the dimension of z is high, and that
 !p z( )  may not have closed form (but we can evaluate it).

We will develop the material in the context of computing 
expections, but sampling also supports picking a good answer, 
such as a MAP estimate of parameters.

 Basic Sampling (so far)

• Uniform sampling (everything builds on this)

• Sampling from a multinomial

• Sampling for selected other distributions (e.g., Gaussian)
– At least, Matlab knows how to do it.

• Sampling univariate distributions using the inverse of the 
cumulative distribution (recall from HW 2). 

 Basic Sampling (so far)

• Sampling univariate distributions using the inverse of the 
cumulative distribution. 

p(y)

h(y)

y0

1



 Basic Sampling (so far)

• Sampling directed graphical models using ancestral sampling. 

 Rejection Sampling

 

Assume that we have an easy to sample function, ,
and a constant, k,  where we know that  p z( ) ! kiq z( ).

1) Sample  q z( )

2) Keep samples in proportion to 
p z( )
kiq z( )    and reject the rest.

z0 z

u0

kq(z0) kq(z)

�p(z)

 Rejection Sampling

 

1) Sample  q z( )

2) Keep samples in proportion to 
p z( )
kiq z( )    and reject the rest.

 Rejection Sampling

• Rejection sampling is hopeless in high dimensions, but is 
useful for sampling low dimensional “building block” 
functions.

• E.G., the Box-Muller method for generating samples from a 
Gaussian uses rejection sampling.

z

p(z)
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A second example where a 
gamma distribution is 
approximated by a Cauchy 
proposal distribution.



 Rejection Sampling

• For complex functions, a good q() and k may not be available.

• One attempt to adaptively find a good q() (see Bishop 11.1.3)

z1 z2 z3 z

ln p(z)
(For log 
concave 
functions)

p(z) f(z)

z

q(z)

Importance Sampling

p(z) f(z)

z

q(z)

Importance Sampling

Rewrite Ep(z ) f[ ] = f z( ) p z( )! dz

= f z( ) p z( )
q z( ) q z( )! dz

" 1
L

p z(l )( )
q z(l )( ) f z(l )( )

l=1

L

#         where samples come from q z( )

Importance Sampling (unnormalized)

 
p z( ) = !p z( )

Zp

    and   q z( ) = !q z( )
Zq



Importance Sampling (unnormalized)

 
p z( ) = !p z( )

Zp

    and   q z( ) = !q z( )
Zq

 

Ep(z ) f[ ]! 1
L

p z(l )( )
q z(l )( ) f z(l )( )

l=1

L

"        (samples from q z(l )( ), equivalently,  !q z(l )( ))

Importance Sampling (unnormalized)

 
p z( ) = !p z( )

Zp

    and   q z( ) = !q z( )
Zq

 

Ep(z ) f[ ]! 1
L

p z(l )( )
q z(l )( ) f z(l )( )

l=1

L

"        (samples from q z(l )( ), equivalently,  !q z(l )( ))

!
Zq

Zp

1
L

!p z(l )( )
!q z(l )( ) f z(l )( )

l=1

L

"

=
Zq

Zp

1
L

!rl f z(l )( )
l=1

L

"           (introducing  !rl =
!p z(l )( )
!q z(l )( ) )

Importance Sampling (unnormalized)

 

Zp = !p z( )! dz

Zp

Zq

=
!p z( )
Zq

! dz =
!p z( )
!q z( )! q z( )dz (because  Zq =

!q z( )
q z( ) )

" 1
L

!rl
l=1

L

#                (samples coming from !q z(l )( ))

Importance Sampling (unnormalized)

 

Ep(z ) f[ ]! Zq

Zp

1
L

!rl f z(l )( )
l=1

L

"             (samples coming from !q z(l )( ))

and   
Zp

Zq

! 1
L

!rl
l=1

L

"                        (samples coming from !q z(l )( ))

so      Ep(z ) f[ ]!
!rl f z(l )( )

l=1

L

"
!rl

l=1

L

"
       (samples coming from !q z(l )( ))

where    !rl =
!p z(l )( )
!q z(l )( )



Importance sampling for graphical models
(from Koller and Friedman)

We know how to sample from directed graphical models 
where no variables are observed or conditioned on. 

Suppose we want to use sampling to compute p(Y = y).

p(Y = y) ! 1
L

I
l
" y(l ), y( )      (samples from p(y))

where I y(l ), y( ) = 1   if   y(l ) = y
0  otherwise

#
$
%

&%

Importance sampling for graphical models
(from Koller and Friedman)

We know how to sample from directed graphical models 
where no variables are observed or conditioned on. 

What about the case of a particular value of a subset of the variables.

EG, we might want to sample:!!!! p Y E = e( )
or, we might want to evaluate:    p y = Y E = e( )

Importance sampling for graphical models
(from Koller and Friedman)

EG, we might want to sample:!!!! p Y E = e( )
or, we might want to evaluate:    p y = Y E = e( )

A fool-proof plan is to sample  p(y,e), and reject e ! E

Importance sampling for graphical models
(from Koller and Friedman)

EG, we might want to sample:!!!! p Y E = e( )
or, we might want to evaluate:    p y = Y E = e( )

A fool-proof plan is to sample  p(y,e), and reject e ! E

(Potentially very expensive!) 



Importance sampling for graphical models
(from Koller and Friedman)

A natural idea is to use ancestral sampling on the graph,
where we set E=e. 

Kollar and Friedman develop this as sampling from the 
"mutilated" Bayesian network. 

Mutilating graphical models
(from Koller and Friedman)

Set grade to g2 and 
intelligence to i1, 
and remove links.

Importance sampling for graphical models
(from Kollar and Friedman)

A natural idea is to use ancestral sampling on the graph,
where we set E=e. 

However, when E=e, this can influence the correct 
sampling of Y, and we have ignored this!

Instead, we use samples from the mutilated network
for the proposal distribution in importance sampling .

Importance sampling for graphical models
(from Koller and Friedman)

p y e( )
q y e( ) =

PBN y e( )
PMBN y e( ) =

PBN y,e( )
PMBN y,e( )

p y e( ) ! 1
L

PBN y,e( )
PMBN y,e( )l

" I Y = y( )      (samples from PMBN Y ,e( ) )



Markov chain Monte Carlo methods

• The approximations of expectation so far have assumed that 
the samples are independent draws. 

• This sounds good, but in high dimensions, we do not know 
how to get good independent samples from the distribution.

• MCMC methods drop this requirement.

• Basic intuition
– If you have finally found a region of high probability, stick around for 

a bit, enjoy yourself, grab some more samples.

Markov chain Monte Carlo methods

• Samples are conditioned on the previous one (this is the 
Markov chain). 

• MCMC is generally a good hammer for complex, high 
dimensional, problems. 

• Main downside is that it is not “plug-and-play”
– Doing well requires taking advantage to the structure of your problem

– MCMC tends to be expensive (but take heart---there may not be any 
other solution, and at least your problem is being solved). 

Metropolis Example

 

We want samples z(1), z(2), ....

Again, write p z( ) = !p z( ) Z

Assume that  q z z( prev)( )  can be sampled easily

Also assume that q( )  is symmetric, i.e., q zA zB( ) = q zB zA( )

For example,  q z z( prev)( ) ~ " z; z( prev),! 2( )

Metropolis Example

While not_bored
{

         Sample q z z( prev)( )
         Accept with probability  A z, z( prev)( ) = min 1,

!p z( )
!p z( prev)( )

!

"
#

$

%
&

         If accept, emit z,  otherwise, emit z( prev).
}



Metropolis Example

Note that

A z, z( prev)( ) = min 1,
!p z( )
!p z( prev)( )

!

"
#

$

%
& = min 1,

p z( )
p z( prev)( )

!

"
#

$

%
&

We do not need to normalize p z( )
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Metropolis Example

Green follows accepted proposals
Red are rejected moves.

Markov chain view

Denote an initial probability distribution by p z(1)( )

Define transition probabilities by:

T z( prev), z( ) = p z z( prev)( )          (a probability distribution)

T = Tm ( )  can change over time, but for now, assume that it
it is always the same (homogeneous chain) 

A given chain evolves from a sample of  p z(1)( ),  and is 

an instance from an essemble of chains. 

Stationary Markov chains

• Recall that our goal is to have our Markov chain emit samples 
from our target distribution.

• This implies that the distribution being sampled at time t+1 is 
the same as that of time t (stationary).

• If our stationary (target) distribution is p(), then if imagine an 
ensemble of chains, they are in each state with (long-run) 
probability p().
– On average, a switch from s1 to s2 happens as often as going from s2 

to s1, otherwise, the percentage of states would not be stable

• If our stationary (target) distribution is p(), what do the 
transition probabilities look like?



Detailed balance

• Detailed balance is defined by:

• Detailed balance is a sufficient condition for a stationary 
distribution.

• Detailed balance is also referred to as reversibility. 

p z( )T z, !z( ) = p !z( )T !z , z( )

(We assume that  T i( )>0)

Detailed balance implies stationary

 p z( ) = p !z( )T !z , z( )
!z
" !          (marginalization)

If we have detailed balance, then 
p !z( )T !z , z( ) = p( prev) z( )T z, !z( )

So, 

p z( ) = p !z( )
!z
" !T !z , z( ) = p( prev) z( )T z, !z( )

z
" = p( prev) !z( )

Hence, detailed balance implies the distribution is stationary. 

Detailed balance (cont)

• Detailed balance (for p()) means that if our chain was 
generating samples from p(),  it would continue to due so.
– We will address how it gets there shortly

• Does the Metropolis algorithm have detailed balance?

Metropolis Example

While not_bored
{

         Sample q z z( prev)( )
         Accept with probability  A z, z( prev)( ) = min 1,

!p z( )
!p z( prev)( )

!

"
#

$

%
&

         If accept, emit z,  otherwise, emit z( prev).
}

Same as   p z( )
p z( prev)( )



Metropolis Example

Recall that in Metropolis,      A z, !z( ) = min 1,
p z( )
p !z( )

"
#$

%
&'

For detailed balance, we need to show
p !z( )q z !z( )A z, !z( ) = p z( )q !z z( )A !z , z( )

Metropolis Example

Recall that in Metropolis,      A z, !z( ) = min 1,
p z( )
p !z( )

"
#$

%
&'

p !z( )q z !z( )A z, !z( ) = q z !z( )min p !z( ), p z( )( )

Metropolis Example

Recall that in Metropolis,      A z, !z( ) = min 1,
p z( )
p !z( )

"
#$

%
&'

p !z( )q z !z( )A z, !z( ) = q z !z( )min p !z( ), p z( )( )
= q !z z( )min p !z( ), p z( )( )

= p z( )q !z z( )min p !z( )
p z( ) ,1

"
#$

%
&'

= p z( )q !z z( )min 1, p !z( )
p z( )

"
#$

%
&'

= p z( )q !z z( )A !z , z( )  

Ergodic chains

• Different starting probabilities will give different chains

• We want our chains to converge (in the limit) to the same 
stationary state, regardless of starting distribution.

• Such chains are called ergodic, and the common stationary 
state is called the equilibrium state.

• Ergodic chains have a unique equilibrium.



When do our chains converge?

• Important theorem tells us that (for finite state spaces*) our chains 
converge to equilibrium under two relatively weak conditions.

• (1) Irreducible
– We can get from any state to any other state

• (2) Aperiodic
– The chain does not get trapped in cycles

• These are true for detailed balance which is sufficient, but not 
necessary for convergence. 

*Infinite or uncountable state spaces introduces additional complexities. 

Intuition behind ergodic chains

Let  p(t ) z( )  be the distribution at some time (e.g., initial distribution)

Let p* z( )  be the stationary distribution

Let  p(t ) z( )  =  p* z( )!  q(t ) z( )

Note that the elements of  p(t+1) z( )  and  p* z( )!sum to one, 
and thus the elements of q(z) sum to zero.

Note also that q(z) is not a probablity.

Intuition behind ergodic chains

Let  p(t ) z( )  be the distribution at some time (e.g., initial distribution)

Let p* z( )  be the stationary distribution

Let  p(t ) z( )  =  p* z( )!  q(t ) z( )

p(t+1) z( ) = p(t ) !z( )
!z
" !T z, !z( )

= p* !z( )
!z
" !T z, !z( )# q(t ) !z( )

!z
" !T z, !z( )

= p* z( )# q(t+1) z( )

Intuition behind ergodic chains

p(t+1) z( ) = p(t ) !z( )
!z
" !T z, !z( )

= p* !z( )
!z
" !T z, !z( )# q(t ) !z( )

!z
" !T z, !z( )

= p* z( )# q(t+1) z( )

Claim that q(t+1) z( ) < q(t ) z( )



Matrix-vector representation

Chains (think ensemble) evolve according to:

 p z( ) = p !z( )
!z
" !T !z , z( )

Matrix vector representation:
p = T !p

And, after n iterations after a starting point:
p(n) = TNp(0)

Matrix representation

A single transition is given by
      p = T !p

Note what happens for stationary state:
       p* = Tp*  

So, p*  is an eigenvector with eigenvalue one. 

And, intutively, if things converge,  p* = T"p(0)

Aside on stochastic Matrices

• A right (row) stochastic matrix has non-negative entries, and 
its rows sum to one.

• A left (column) stochastic matrix has non-negative entries, 
and its columns sum to one.

• A doubly stochastic matrix has both properties. 

Aside on stochastic Matrices

• T is a left (column) stochastic matrix.
– If you are right handed, take the transpose

• The column vector, p, also has non-negative elements, that 
sum to one (sometimes this is called a stochastic vector).

• Fun facts that we should do on the board
– The product of a stochastic matrix and vector is a stochastic vector. 
– The product of two stochastic matrices is a stochastic matrix.



Aside on (stochastic) Matrix powers

Consider the eigenvalue decomposition of T , T = E!E"1

   TN = E!NE"1

Since TN  cannot grow without bound, the eigenvalues
are inside ["1,1]. 

In fact, for our situation, the second biggest absolute 
value of the eigenvalues is less than one (not so easy to prove),
which means the biggest one is 1. 

Aside on (stochastic) Matrix powers

 

We have  TN = E!NE"1

! =

1
#2

i!i!i
#K

$

%

&
&
&
&

'

(

)
)
)
)

  and   !* =

1
0

i!i!i
0

$

%

&
&
&
&

'

(

)
)
)
)

!*E"1 =

e1
T

0
...
0

$

%

&
&
&
&

'

(

)
)
)
)

 

Recall that we are studying  E!"E#1p

We have      !"E#1 =

e1
T

0
...
0

$

%

&
&
&
&

'

(

)
)
)
)

So,              !"E#1p =

e1
T *p
0
...
0

$

%

&
&
&
&

'

(

)
)
)
)

= ?

Aside on (stochastic) Matrix powers Aside on (stochastic) Matrix powers

Write p in terms of the eigen basis

p = ai
i
! ei

e1
Tp = aie1

T

i
! ei = a1

and,       "#E$1p =

e1
T %p
0
...
0

&

'

(
(
(
(

)

*

+
+
+
+

=

a1

0
...
0

&

'

(
(
(
(

)

*

+
+
+
+



Recall that we are studying  E!"E#1p

!"E#1p =

a1

0
...
0

$

%

&
&
&
&

'

(

)
)
)
)

So,              E !"E#1p = a1e1

Aside on (stochastic) Matrix powers Aside on (stochastic) Matrix powers

 

So,               E!"E#1p!!=!!e1 e1
T $p( )
a1

!"#
$ e1 $ p

*

In summary,  p* $ e1 together with  p*  stochastic means that E!"E#1p = p*

This is true, no mater what the initial point p is. 

So, glossing over details, we have convergence to equilibrium. 

Justification relies on Perron Frobenius!theorem  

From Wikipedia

Main points about P-F

• The maximal eigenvalue is strictly maximal (item 1). 

• The corresponding eigenvector is “simple” (item 2)

• It has all positive (or negative) components (item 3). 

• There is no other eigenvector that can be made non-negative.

• The maximal eigenvalue of a stochastic matrix has absolute 
value 1 (item 8 applied to stochastic matrix). 



Aside on (stochastic) Matrix powers

p* = TP*  is an eigenvector with eigenvalue one.

We have written it as p* ! e1 because e1  is the 
eigenvector normalized to norm 1 (standard form).

Intuitively (perhaps), T will reduce any component of p 
orthogonal to p*,  and TN  will kill off such components as 
N !".

Summary

Algebraic proof

Neal ’93 provides an algebraic proof which does not rely on 
spectral theory. 

(A question on the final studies this further for those that are 
interested). 

Summary so far

• Under reasonable (easily checked and/or arranged) 
conditions, our chains converge to an equilibrium state.

• Easiest way to prove (or check) that this is the case is to show 
detailed balance.

• To use MCMC for sampling a distribution, we simply ensure 
that our target distribution is the equilibrium state.

• Variations on MCMC are mostly about improving the speed 
of convergence for particular situations. 

Summary so far

• The time it takes to get reasonably close to equilibrium 
(where samples come from the target distribution) is called 
“burn in” time. 
– I.E., how long does it take to forget the starting state.
– There is no general way to know when this has occurred.

• The average time it takes to visit a state is called “hit time”. 

• What if we really want independent samples?
– We can take every Nth sample (some theories about how long to 

wait exist, but it depends on the algorithm and distribution)



Metropolis-Hastings MCMC method 

While not_bored
{

         Sample q z z( prev)( )
         Accept with probability  A z, z( prev)( ) = min 1,

!p z( )q z( prev) z( )
!p z( prev)( )q z z( prev)( )

!

"
#
#

$

%
&
&

         If accept, emit z,  otherwise, emit z( prev).
}

If Metropolis-Hastings has detailed balance, then it 
converges to the target distribution under weak conditions.

(The converse is not true, but generally samplers of interest 
will have detailed balance).  

Does Metropolis-Hastings converge 
to the target distribution? 

Does Metropolis-Hastings have detailed balance? 

p !z( )q z !z( )A z, !z( ) = min p !z( )q z !z( ), p z( )q !z z( )( )
= p z( )q !z z( )min q z !z( )

q !z z( )
p !z( )
p z( ) ,1

"

#$
%

&'

= p z( )q !z z( )min 1, p !z( )
p z( )

q z !z( )
q !z z( )

"

#$
%

&'

= p z( )q !z z( )A !z , z( )

To show detailed balance we need to show 

p !z( )q z !z( )A z, !z( ) = p z( )q !z z( )A !z , z( )

Metropolis-Hastings comments 

• Again it does not matter if we use unnormalized probabilities.

• It should be clear that the previous version, where q() is 
symmetric, is a special case. 



Reversible Jump MH

• Suppose the dimension of your problem is not known (e.g., 
you want to estimate the number of clusters).

• Sampling now includes “jumping” changes probability space
• Requires a modification to Metropolis Hastings 

– Reversible jump MCMC, Green 95, 03

• RJMCMC is only about sampling. It does not tell you the best 
number of dimensions (e.g., how many clusters).
– This must come from either the prior or the likelihood. 

Gibbs sampling 

• Gibbs sampling is another special case of MH.

• You might notice that the transition function, T(), varies 
(cycles) over time. 
– This is a relaxation of our assumption used to provide intuition about 

convergence
– However, it still OK because the concatenation of the T() for a cycle 

converge 

Consider a set of N variables,  x1, !x1,! ...., xN ,!Gibbs says

Initialize zi
(0) : i = 1,...,N{ }

While not_bored  
{
         For i=1 to N
         {

                 Sample zi
(!+1)  ~ p zi z1

(!+1),..., zi"1
(!+1), zi+1

(! ),..., zM
(! )( )

                 Always accept (emit z = z1
(!+1),..., zi"1

(!+1), zi
(!+1), zi+1

(! ),..., zM
(! ) )

        }
}

(From Dellaert and Zhu tutorial)



Examples of Gibbs 

• If one can specify the conditional distributions so that they can 
be sampled, Gibbs is often a very good method. 

• Typical examples include symmetric systems like the Markov 
random fields we had for images.
– With a Markov property, the conditional probability can be quite simple.

Examples of Gibbs 

(From Dellaert and Zhu tutorial)

Examples of Gibbs 

(From Dellaert and Zhu tutorial)

Gibbs as MH 

qi z z
*( ) = p zi z \ i

*( )      and     qi z
* z( ) = p zi

* z \ i( )

And we have   z \ i = z \ i
*   because only i changes. 

To see Gibbs as MH, consider that if was MH, then our 
proposal distribution, q(), for a given variable, i, would be 



Gibbs as MH 

A z*,z( ) = p z*( )qi z z*( )
p z( )qi z* z( )

=
p z \ i

*( ) p zi
* z \ i

*( )qi z z*( )
p z \ i( ) p zi z \ i( )qi z* z( )

=
p z \ i

*( ) p zi
* z \ i

*( ) p zi z \ i
*( )

p z \ i( ) p zi z \ i( ) p zi
* z \ i( )

= 1

qi z z
*( ) = p zi z \ i

*( )
and   qi z

* z( ) = p zi
* z \ i( )

and   z \ i = z \ i
*   

Exploring the space

• Algorithms like Metropolis-Hastings exhibit “random walk 
behavior” if the step size (proposal variance) is small

• If the step size is too big, then you get rejected too often

• Adaptive methods exist (see slice sampling in Bishop)

• Another approach is to combine samplers with different 
properties

Combined samplers Annealing 

• Analogy with physical systems

• Relevant for optimization (not integration)

• Powers of probability distributions emphasize the peaks

• If we are looking for a maximum within a lot of distracting 
peaks, this can help. 



Annealing 

• Define a temperature T, and a cooling schedule (black magic 
part)

• Lower temperatures correspond to emphasized maximal 
peaks.
– Hence we exponentiate by (1/T). 

Annealing 

(From Andrieu et al)

(From Andrieu et al)

Continuous versus discrete variables

• Derivatives of continuous distributions can tell you about the 
structure of your problem.
– Opportunities for going much faster

• Naive approach is gradient ascent with added stochastic 
properties
– Take a step, then perturb the result.

• Typical approach is to link the probability distribution to a 
potential energy function
– Follow the system to find low energy (high probability)
– Stochastic sampling via random momentum
– An effective example method is Hybrid Monte Carlo



Hybrid Monte Carlo

• References include Andrieu et al. ’01 and Neal’93.

• A more effective example method is Hybrid Monte Carlo

• Link the probability distribution to a potential energy function
– Alternate stochastic sampling with “dynamics”.
– The dynamics follow the system to find low energy (high probability)

• HMC is an “auxiliary variable sampler”
– Important trick
– To sample p(z) we sample p(z,r) or p(z,r1,r2,...)
– Ignore the auxiliary variables when we use the samples.

Hamiltonian Dynamics

p z( ) = 1
Zp

exp !E z( )( )

We equate z with position, so E z( )  is the potential energy.

High probability  "  Low energy

 E z( ) = ! log Zp( )! log p z( )( ).

Hamiltonian Dynamics

Recall that the gradient, !,  is the vector of partial derivatives.

Recall from physics that force is the negative gradient of energy

From before  E z( ) = " log Zp( )" log p z( )( )

So  !E z( ) = ! " log p z( )( )( )

Or, in terms of log probabilities, we define  

# z( )!= !! log p z( )( )( )="!E z( ) (This is the force)



Hamiltonian Dynamics

p z( ) = 1
Zp

exp !E z( )( )      and    "E z( ) = " ! log p z( )( )( )

Let r be the momentum vector for the system. Denote the
kinetic energy by K r( ).

K r( ) = 1
2
r 2 = 1

2
ri

2

i
# (We assume that mass is one). 

Hamiltonian Dynamics

H z,r( ) = E z( ) + K r( )             (conserved)

Our distribution with auxilary variables is

p z,r( ) = 1
Z

exp !H z,r( )( )

Hamiltonian Dynamics

H z,r( ) = E z( ) + K r( )             (conserved)

We follow z according to H  with a random r

This can rapidly transport us towards (but not to)
a local minimun thus avoiding random walk.

To follow H , we observe that z changes proportional
to r, and r changes proportion to force ( !"E). 

Again   !"E = " log p z( )( )( ) # $p z( )

Following Dynamics 

In HMC we follow the dynamics for L time steps of size !
(tunable parameters). 

In the "leap frog"method for each ! .
    1. Take 1/2 step in r.
   2. Take a full step in z.

3. Take 1/2 step in r. 



Following Dynamics 

For L leap frog steps we have. 

    1. Take 1/2 step in r.
   2. L !1( )  times take a full steps in z, then r.

3. Take a full step in z. 
4. Take 1/2 step in r

Following Dynamics 

To take a full step in z.

z ! +1( ) = z !( ) + " # $ r !( )( )

("  is the step size).
    

Following Dynamics 

To take 1/2 step in r.

r ! + 1
2

"
#$

%
&' = r !( ) + 1

2
( ) * z !( )( )

Where * z !( )( ) = + log p z !( )( )( ) = ,+E z( )     (force)

    

Following Dynamics 

• After L steps of size t, we are at a new point with some bias of 
being at a lower potential energy (higher probability) and 
higher momentum.

• Momentum allows us to jump out of wells.



HMC dynamics step acceptance 

• If our integration is perfect (i.e., in the limit as t --> 0) then 
energy is conserved.
– Thus the value of distribution p(z,r) is the same after the dynamics.

• If we assume no integration errors, we simply accept this step

• If we want to account for error accumulation, we accept the 
result according to:

min 1,
p z*,r*( )
p z,r( )

!

"
#

$

%
& = min 1,exp H z,r( )' H z*,r*( )( )( )

HMC stochastic step 

• Typical instantiations sample the momentum variable

• Two common strategies
– Sample the r independently from a Gaussian
– Sample r from a Gaussian using Gibbs

• Note that in both of these cases the proposals are always 
accepted.

Putting it all together
(A typical vision lab sampler) 

• Discrete variables are sampled using (reversible jump) 
Metropolis Hastings.

• Continuous variables are sampled using stochastic dynamics 
(essentially hybrid Monte Carlo).

• Discrete variables typically control topology or components
– The number of components and their type (block, cylinder)
– How components are connected (branches from a stem)

A typical vision lab sampler

• Randomly proposing structure is too expensive because of the 
high rejection rate.

• Solution (part one) is to use data driven sampling
– Proposals are conditioned on distributions computed before we begin 

using the data
– For example, the probability of a corner being present in each point in 

the image.

• Solution (part two) is to delay acceptance 
– Adjust continuous parameters using stochastic dynamics so that the 

proposed structure is a good fit to the data. 



A typical vision lab sampler

• We thus alternate between
– (1) data driven proposals for new structure (or to switch or kill 

existing structure)
– (2) exploring the continuous parameters of the structure

• Additional gains in optimization through having multiple 
samplers running in parallel exchange information


