Sampling based inference

- Resources.
- Bishop, chapter 11
- Koller and Friedman, chapter 12
- Andrieu et al. (linked on lecture page).
- Koller and Friedman uses "particles" terminology instead of "samples".

Sampling based inference

- We have studied two themes in inference.
- Marginalization / expectation / summing out or integration
- Optimization
- Two flavors of activities
- Fitting (inference using a model)
- Learning (inference to find a model)
- These activities are basically the same in the generative modeling approach.

Motivation for sampling methods

- Real problems are typically complex and high dimensional.
- Example, images as evidence for stuff in the world

Motivation for sampling methods

- Real problems are typically complex and high dimensional.
- Suppose that we could generate samples from a distribution that is proportional to one we are interested in.

Typical case we are often interested in is $p(\theta \mid D)$
$p(\theta \mid D)=\frac{p(\theta) p(D \mid \theta)}{p(D)}$
Consider $\tilde{p}(z)=p(\theta) p(D \mid \theta)$

Motivation for sampling methods

- Generally, θ lives in a very high dimensional space.
- Generally, regions of high $\tilde{p}(z)$ is very little of that space.
- IE, the probability mass is very localized.
- Watching samples from $\tilde{p}(z)$ should provide a good maximum (one of our inference problems)

Motivation for sampling methods (II)

- Now consider computing the expectation of a function $f(z)$ over $p(z)$.
- Recall that this looks like $E_{p(z)}[f]=\int_{z} f(z) p(z) d z$
- How can we approximate or estimate E?

Motivation for sampling methods (II)

- Now consider computing the expectation of a function $f(z)$ over $p(z)$
- Recall that this looks like $E_{p(z)}[f]=\int_{z} f(z) p(z) d z$
- A bad plan for computing E:

Discretize the space where z lives into L blocks
Then compute $E_{p(z)}[f] \cong \frac{1}{L} \sum_{l=1}^{L} p(z) f(z)$

Motivation for sampling methods (II)

- Now consider computing the expectation of a function $f(z)$ over $p(z)$.
- Recall that this looks like $E_{p(z)}[f]=\int f(z) p(z) d z$
- A better plan, assuming we can sample $\tilde{p}(z)$

Given independant samples $z^{(l)}$ from $\tilde{p}(z)$
Estimate $\quad E_{p(z)}[f] \cong \frac{1}{L} \sum_{l=1}^{L} f(z)$

Challenges for sampling

In real problems sampling $p(z)$ is very difficult.

We typically do not know the normalization constant, Z .
(So we need to use $\tilde{p}(z)$).

Even if we can draw samples, it is hard to know if (when) they are good, and if we have enough of them.

Evaluating $\tilde{p}(z)$ is generally much easier (although, it can also be quite involved).

Sampling framework

We assume that sampling from $\tilde{p}(z)$ is hard, but that evaluating $\tilde{p}(z)$ is relatively easy.

We also assume that the dimension of z is high, and that $\tilde{p}(z)$ may not have closed form (but we can evaluate it).

We will develop the material in the context of computing expections, but sampling also supports picking a good answer, such as a MAP estimate of parameters.

Basic Sampling (so far)

- Uniform sampling (everything builds on this)
- Sampling from a multinomial
- Sampling for selected other distributions (e.g., Gaussian)
- At least, Matlab knows how to do it.
- Sampling univariate distributions using the inverse of the cumulative distribution (recall from HW 2).

Basic Sampling (so far)

- Sampling univariate distributions using the inverse of the cumulative distribution.

Basic Sampling (so far)

- Sampling directed graphical models using ancestral sampling.

Rejection Sampling

1) Sample $q(z)$
2) Keep samples in proportion to $\frac{p(z)}{k \cdot q(z)}$ and reject the rest.

Rejection Sampling

Assume that we have an easy to sample function, , and a constant, k, where we know that $p(z) \leq k \bullet q(z)$.

1) Sample $q(z)$
2) Keep samples in proportion to $\frac{p(z)}{k \bullet q(z)}$ and reject the rest.

Rejection Sampling

- Rejection sampling is hopeless in high dimensions, but is useful for sampling low dimensional "building block" functions.
- E.G., the Box-Muller method for generating samples from a Gaussian uses rejection sampling.

A second example where a gamma distribution is approximated by a Cauchy proposal distribution.

Rejection Sampling

- For complex functions, a good $q()$ and k may not be available.
- One attempt to adaptively find a good q () (see Bishop 11.1.3)

Importance Sampling

Rewrite $E_{p(z)}[f]=\int f(z) p(z) d z$

$$
\begin{aligned}
& =\int f(z) \frac{p(z)}{q(z)} q(z) d z \\
& \cong \frac{1}{L} \sum_{l=1}^{L} \frac{p\left(z^{(l)}\right)}{q\left(z^{(l)}\right)} f\left(z^{(l)}\right)
\end{aligned}
$$

where samples come from $q(z)$

Importance Sampling

Importance Sampling (unnormalized)

$$
\begin{aligned}
& p(z)=\frac{\tilde{p}(z)}{Z_{p}} \text { and } \mathrm{q}(z)=\frac{\tilde{q}(z)}{Z_{q}} \\
& E_{p(z)}[f] \cong \frac{1}{L} \sum_{l=1}^{L} \frac{p\left(z^{(l)}\right)}{q\left(z^{(l)}\right)} f\left(z^{(l)}\right) \quad \text { (samples from } q\left(z^{(l)}\right) \text {, equivalently, } \tilde{q}\left(z^{(l)}\right) \text {) }
\end{aligned}
$$

Importance Sampling (unnormalized)

$$
\begin{aligned}
& p(z)= \frac{\tilde{p}(z)}{Z_{p}} \text { and } \mathrm{q}(z)=\frac{\tilde{q}(z)}{Z_{q}} \\
& \begin{aligned}
& E_{p(z)}[f] \cong \frac{1}{L} \sum_{l=1}^{L} \frac{p\left(z^{(l)}\right)}{q\left(z^{(l)}\right)} f\left(z^{(l)}\right) \quad \text { (samples from } q\left(z^{(l)}\right) \text {, equivalently, } \tilde{q}\left(z^{(l)}\right) \text {) } \\
& \cong \frac{Z_{q}}{Z_{p}} \frac{1}{L} \sum_{l=1}^{L} \tilde{\tilde{p}}\left(z^{(l)}\right) \\
& \tilde{q}\left(z^{(l)}\right)
\end{aligned}\left(z^{(l)}\right) \\
&\left.=\frac{Z_{q}}{Z_{p}} \frac{1}{L} \sum_{l=1}^{L} \tilde{r}_{l} f\left(z^{(l)}\right) \quad \text { (introducing } \tilde{r_{l}}=\frac{\tilde{p}\left(z^{(l)}\right)}{\tilde{q}\left(z^{(l)}\right)}\right)
\end{aligned}
$$

Importance Sampling (unnormalized)

$E_{p(z)}[f] \cong \frac{Z_{q}}{Z_{p}} \frac{1}{L} \sum_{l=1}^{L} \tilde{r}_{l} f\left(z^{(l)}\right)$
(samples coming from $\tilde{q}\left(z^{(l)}\right)$)
and $\frac{Z_{p}}{Z_{q}} \cong \frac{1}{L} \sum_{l=1}^{L} \tilde{r}_{l} \quad \quad \quad$ (samples coming from $\left.\tilde{q}\left(z^{(l)}\right)\right)$
so $\quad E_{p(z)}[f] \cong \frac{\sum_{l=1}^{L} \tilde{r}_{l} f\left(z^{(l)}\right)}{\sum_{l=1}^{L} \tilde{r}_{l}} \quad$ (samples coming from $\tilde{q}\left(z^{(l)}\right)$)
where $\quad \tilde{r}_{l}=\frac{\tilde{p}\left(z^{(l)}\right)}{\tilde{q}\left(z^{(l)}\right)}$

Importance sampling for graphical models

We know how to sample from directed graphical models where no variables are observed or conditioned on.

Suppose we want to use sampling to compute $p(Y=y)$.
$p(Y=y) \cong \frac{1}{L} \sum_{l} I\left(y^{(l)}, y\right) \quad($ samples from $p(y))$
where $I\left(y^{(l)}, y\right)=\left\{\begin{array}{l}1 \text { if } y^{(l)}=y \\ 0 \text { otherwise }\end{array}\right.$

Importance sampling for graphical models

We know how to sample from directed graphical models where no variables are observed or conditioned on.

What about the case of a particular value of a subset of the variables.

EG, we might want to sample: $\quad p(Y \mid E=e)$
or, we might want to evaluate: $\quad p(y=Y \mid E=e)$

EG, we might want to sample: $\quad p(Y \mid E=e)$
or, we might want to evaluate: $\quad p(y=Y \mid E=e)$
A fool-proof plan is to sample $p(y, e)$, and reject $\mathrm{e} \neq \mathrm{E}$

Importance sampling for graphical models

Importance sampling for graphical models

EG, we might want to sample: $p(Y \mid E=e)$
or, we might want to evaluate: $\quad p(y=Y \mid E=e)$
A fool-proof plan is to sample $p(y, e)$, and reject $\mathrm{e} \neq \mathrm{E}$
(Potentially very expensive!)

Importance sampling for graphical models

A natural idea is to use ancestral sampling on the graph,
where we set $\mathrm{E}=\mathrm{e}$.

Kollar and Friedman develop this as sampling from the "mutilated" Bayesian network.

Mutilating graphical models

Set grade to g^{2} and intelligence to i^{1}, and remove links.

g^{2}	0.4	0.6
g^{3}	0.99	0.0

(from Koller and Friedman)
Importance sampling for graphical models

$$
\begin{aligned}
& \frac{p(y \mid e)}{q(y \mid e)}=\frac{P_{B N}(y \mid e)}{P_{M B N}(y \mid e)}=\frac{P_{B N}(y, e)}{P_{M B N}(y, e)} \\
& p(y \mid e) \cong \frac{1}{L} \sum_{l} \frac{P_{B N}(y, e)}{P_{M B N}(y, e)} I(Y=y) \quad\left(\text { samples from } P_{M B N}(Y, e)\right)
\end{aligned}
$$

Markov chain Monte Carlo methods

- The approximations of expectation so far have assumed that the samples are independent draws.
- This sounds good, but in high dimensions, we do not know how to get good independent samples from the distribution.
- MCMC methods drop this requirement.
- Basic intuition
- If you have finally found a region of high probability, stick around for a bit, enjoy yourself, grab some more samples.

Markov chain Monte Carlo methods

- Samples are conditioned on the previous one (this is the Markov chain).
- MCMC is generally a good hammer for complex, high dimensional, problems
- Main downside is that it is not "plug-and-play"
- Doing well requires taking advantage to the structure of your problem
- MCMC tends to be expensive (but take heart---there may not be any other solution, and at least your problem is being solved).

Metropolis Example

We want samples $z^{(1)}, z^{(2)}, \ldots$.

Again, write $p(z)=\tilde{p}(z) / Z$

Assume that $q\left(z \mid z^{(\text {prev })}\right)$ can be sampled easily

Also assume that $q()$ is symmetric, i.e., $q\left(z_{A} \mid z_{B}\right)=q\left(z_{B} \mid z_{A}\right)$

For example, $q\left(z \mid z^{\text {(prev) })}\right) \sim \mathbb{N}\left(z ; z^{(\text {prev) })}, \sigma^{2}\right)$

Metropolis Example

While not_bored
\{
Sample $q\left(z \mid z^{(\text {prev })}\right)$
Accept with probability $A\left(z, z^{(\text {prev })}\right)=\min \left(1, \frac{\tilde{p}(z)}{\tilde{p}\left(z^{(\text {prev })}\right)}\right)$
If accept, emit z, otherwise, emit $z^{(\text {prev })}$.
\}

Metropolis Example

Note that
$A\left(z, z^{\text {(prev) }}\right)=\min \left(1, \frac{\tilde{p}(z)}{\tilde{p}\left(z^{\text {(prev) })}\right)}\right)=\min \left(1, \frac{p(z)}{p\left(z^{\text {(prev) })}\right)}\right)$

We do not need to normalize $p(z)$

Markov chain view

Denote an initial probability distribution by $p\left(z^{(1)}\right)$

Define transition probabilities by:

$$
T\left(z^{(\text {prev })}, z\right)=p\left(z \mid z^{(\text {prev) })}\right) \quad \text { (a probability distribution) }
$$

$T=T_{m}()$ can change over time, but for now, assume that it it is always the same (homogeneous chain)

A given chain evolves from a sample of $p\left(z^{(1)}\right)$, and is an instance from an essemble of chains.

Metropolis Example

Green follows accepted proposals
Red are rejected moves.

Stationary Markov chains

- Recall that our goal is to have our Markov chain emit samples from our target distribution.
- This implies that the distribution being sampled at time $t+1$ is the same as that of time t (stationary).
- If our stationary (target) distribution is $p()$, then if imagine an ensemble of chains, they are in each state with (long-run) probability $p()$.
- On average, a switch from s1 to s2 happens as often as going from s2 to s1, otherwise, the percentage of states would not be stable
- If our stationary (target) distribution is $p()$, what do the transition probabilities look like?

Detailed balance

- Detailed balance is defined by:

$$
p(z) T\left(z, z^{\prime}\right)=p\left(z^{\prime}\right) T\left(z^{\prime}, z\right)
$$

(We assume that $\mathrm{T}(\cdot)>0$)

- Detailed balance is a sufficient condition for a stationary distribution.
- Detailed balance is also referred to as reversibility.

Detailed balance (cont)

- Detailed balance (for p()) means that if our chain was generating samples from $p()$, it would continue to due so.
- We will address how it gets there shortly
- Does the Metropolis algorithm have detailed balance?

Detailed balance implies stationary

$$
p(z)=\sum_{z^{\prime}} p\left(z^{\prime}\right) T\left(z^{\prime}, z\right) \quad \text { (marginalization) }
$$

If we have detailed balance, then

$$
p\left(z^{\prime}\right) T\left(z^{\prime}, z\right)=p^{(p r e v)}(z) T\left(z, z^{\prime}\right)
$$

So,
$p(z)=\sum_{z^{\prime}} p\left(z^{\prime}\right) T\left(z^{\prime}, z\right)=\sum_{z} p^{(\text {prev })}(z) T\left(z, z^{\prime}\right)=p^{(\text {prev })}\left(z^{\prime}\right)$

Hence, detailed balance implies the distribution is stationary.

Metropolis Example

Recall that in Metropolis, $\quad A\left(z, z^{\prime}\right)=\min \left(1, \frac{p(z)}{p\left(z^{\prime}\right)}\right)$
For detailed balance, we need to show
$p\left(z^{\prime}\right) q\left(z \mid z^{\prime}\right) A\left(z, z^{\prime}\right)=p(z) q\left(z^{\prime} \mid z\right) A\left(z^{\prime}, z\right)$

Metropolis Example

Recall that in Metropolis, $\quad A\left(z, z^{\prime}\right)=\min \left(1, \frac{p(z)}{p\left(z^{\prime}\right)}\right)$
$p\left(z^{\prime}\right) q\left(z \mid z^{\prime}\right) A\left(z, z^{\prime}\right)=q\left(z \mid z^{\prime}\right) \min \left(p\left(z^{\prime}\right), p(z)\right)$

Metropolis Example

Recall that in Metropolis, $\quad A\left(z, z^{\prime}\right)=\min \left(1, \frac{p(z)}{p\left(z^{\prime}\right)}\right)$

$$
\begin{aligned}
p\left(z^{\prime}\right) q\left(z \mid z^{\prime}\right) A\left(z, z^{\prime}\right) & =q\left(z \mid z^{\prime}\right) \min \left(p\left(z^{\prime}\right), p(z)\right) \\
& =q\left(z^{\prime} \mid z\right) \min \left(p\left(z^{\prime}\right), p(z)\right) \\
& =p(z) q\left(z^{\prime} \mid z\right) \min \left(\frac{p\left(z^{\prime}\right)}{p(z)}, 1\right) \\
& =p(z) q\left(z^{\prime} \mid z\right) \min \left(1, \frac{p\left(z^{\prime}\right)}{p(z)}\right) \\
& =p(z) q\left(z^{\prime} \mid z\right) A\left(z^{\prime}, z\right)
\end{aligned}
$$

Ergodic chains

- Different starting probabilities will give different chains
- We want our chains to converge (in the limit) to the same stationary state, regardless of starting distribution.
- Such chains are called ergodic, and the common stationary state is called the equilibrium state.
- Ergodic chains have a unique equilibrium.

When do our chains converge?

- Important theorem tells us that (for finite state spaces*) our chains converge to equilibrium under two relatively weak conditions.
- (1) Irreducible
- We can get from any state to any other state
- (2) Aperiodic
- The chain does not get trapped in cycles
- These are true for detailed balance which is sufficient, but not necessary for convergence.
*Infinite or uncountable state spaces introduces additional complexities.

Intuition behind ergodic chains

Let $p^{(t)}(z)$ be the distribution at some time (e.g., initial distribution)

Let $p^{*}(z)$ be the stationary distribution

Let $p^{(t)}(z)=p^{*}(z)-\mathrm{q}^{(t)}(z)$

$$
\begin{aligned}
p^{(t+1)}(z) & =\sum_{z^{\prime}} p^{(t)}\left(z^{\prime}\right) T\left(z, z^{\prime}\right) \\
& =\sum_{z^{\prime}} p^{*}\left(z^{\prime}\right) T\left(z, z^{\prime}\right)-\sum_{z^{\prime}} q^{(t)}\left(z^{\prime}\right) T\left(z, z^{\prime}\right) \\
& =p^{*}(z)-q^{(t+1)}(z)
\end{aligned}
$$

Intuition behind ergodic chains

Let $p^{(t)}(z)$ be the distribution at some time (e.g., initial distribution)

Let $p^{*}(z)$ be the stationary distribution

Let $p^{(t)}(z)=p^{*}(z)-\mathrm{q}^{(t)}(z)$

Note that the elements of $p^{(t+1)}(z)$ and $p^{*}(z)$ sum to one, and thus the elements of $q(z)$ sum to zero.

Note also that $q(z)$ is not a probablity.

Intuition behind ergodic chains

$$
\begin{aligned}
p^{(t+1)}(z) & =\sum_{z^{\prime}} p^{(t)}\left(z^{\prime}\right) T\left(z, z^{\prime}\right) \\
& =\sum_{z^{\prime}} p^{*}\left(z^{\prime}\right) T\left(z, z^{\prime}\right)-\sum_{z^{\prime}} q^{(t)}\left(z^{\prime}\right) T\left(z, z^{\prime}\right) \\
& =p^{*}(z)-q^{(t+1)}(z)
\end{aligned}
$$

Claim that $\left|q^{(t+1)}(z)\right|<\left|q^{(t)}(z)\right|$

Matrix-vector representation

Chains (think ensemble) evolve according to:

$$
p(z)=\sum_{z^{\prime}} p\left(z^{\prime}\right) T\left(z^{\prime}, z\right)
$$

Matrix vector representation:
$\mathbf{p}=\mathbf{T} \mathbf{p}^{\prime}$

And, after n iterations after a starting point:

$$
\mathbf{p}^{(n)}=\mathbf{T}^{N} \mathbf{p}^{(0)}
$$

Matrix representation

A single transition is given by

$$
\mathbf{p}=\mathbf{T} \mathbf{p}^{\prime}
$$

Note what happens for stationary state:

$$
\mathbf{p}^{*}=\mathbf{T} \mathbf{p}^{*}
$$

So, \mathbf{p}^{*} is an eigenvector with eigenvalue one.

And, intutively, if things converge, $\mathbf{p}^{*}=\mathbf{T}^{\infty} \mathbf{p}^{(0)}$

Aside on stochastic Matrices

- A right (row) stochastic matrix has non-negative entries, and its rows sum to one.
- A left (column) stochastic matrix has non-negative entries, and its columns sum to one.
- A doubly stochastic matrix has both properties.

Aside on stochastic Matrices

- T is a left (column) stochastic matrix.
- If you are right handed, take the transpose
- The column vector, \mathbf{p}, also has non-negative elements, that sum to one (sometimes this is called a stochastic vector).
- Fun facts that we should do on the board
- The product of a stochastic matrix and vector is a stochastic vector.
- The product of two stochastic matrices is a stochastic matrix.

Aside on (stochastic) Matrix powers

Consider the eigenvalue decomposition of $T, T=E \Lambda E^{-1}$

$$
\mathrm{T}^{N}=E \Lambda^{N} E^{-1}
$$

Since T^{N} cannot grow without bound, the eigenvalues are inside $[-1,1]$.

In fact, for our situation, the second biggest absolute value of the eigenvalues is less than one (not so easy to prove), which means the biggest one is 1 .

Aside on (stochastic) Matrix powers

We have $\mathrm{T}^{N}=E \Lambda^{N} E^{-1}$
$\Lambda=\left(\begin{array}{llll}1 & & & \\ & \lambda_{2} & & \\ & & \ldots & \\ & & & \lambda_{K}\end{array}\right)$ and $\Lambda^{\infty}=\left(\begin{array}{cccc}1 & & & \\ & 0 & & \\ & & \cdots & \\ & & & 0\end{array}\right)$
$\Lambda^{\infty} E^{-1}=\left(\begin{array}{c}\mathbf{e}_{1}^{T} \\ 0 \\ \ldots \\ 0\end{array}\right)$

Aside on (stochastic) Matrix powers

Recall that we are studying $\mathrm{E} \Lambda^{\infty} E^{-1} \mathbf{p}$

We have $\quad \Lambda^{\infty} E^{-1}=\left(\begin{array}{c}\mathbf{e}_{1}^{T} \\ 0 \\ \ldots \\ 0\end{array}\right)$

So, $\quad \Lambda^{\infty} E^{-1} \mathbf{p}=\left(\begin{array}{c}\mathbf{e}_{1}^{T} \cdot \mathbf{p} \\ 0 \\ \ldots \\ 0\end{array}\right)=$?

Aside on (stochastic) Matrix powers

Write \mathbf{p} in terms of the eigen basis
$\mathbf{p}=\sum_{i} a_{i} \mathbf{e}_{i}$
$\mathbf{e}_{1}^{T} \mathbf{p}=\sum a_{i} \mathbf{e}_{1}^{T} \mathbf{e}_{i}=a_{1}$
and, $\quad \Lambda^{\infty} E^{-1} \mathbf{p}=\left(\begin{array}{c}\mathbf{e}_{1}^{T} \cdot \mathbf{p} \\ 0 \\ \ldots \\ 0\end{array}\right)=\left(\begin{array}{c}a_{1} \\ 0 \\ \ldots \\ 0\end{array}\right)$

Aside on (stochastic) Matrix powers

Recall that we are studying $\mathrm{E} \Lambda^{\infty} E^{-1} \mathbf{p}$
$\Lambda^{\infty} E^{-1} \mathbf{p}=\left(\begin{array}{c}a_{1} \\ 0 \\ \ldots \\ 0\end{array}\right)$

So, $\quad \mathrm{E} \Lambda^{\infty} E^{-1} \mathbf{p}=a_{1} \mathbf{e}_{1}$

Aside on (stochastic) Matrix powers

So, $\quad \mathrm{E} \Lambda^{\infty} E^{-1} \mathbf{p}=\mathbf{e}_{1} \underbrace{\left(\mathbf{e}_{1}^{T} \cdot \mathbf{p}\right)}_{a_{1}}\left\|\mathbf{e}_{1}\right\| \mathbf{p}^{*}$

In summary, $\mathbf{p}^{*} \| \mathbf{e}_{1}$ together with \mathbf{p}^{*} stochastic means that $\mathrm{E} \Lambda^{\infty} E^{-1} \mathbf{p}=\mathbf{p}^{*}$

This is true, no mater what the initial point \mathbf{p} is.

So, glossing over details, we have convergence to equilibrium.

Justification relies on Perron Frobenius theorem

Let $A=\left(a_{i j}\right)$ be an $n \times n$ positive matrix: $a_{i j}>0$ for $1 \leq i, j \leq n$. Then the following statements hold.

1. There is a positive real number r, called the Perron root or the Perron-Frobenius eigenvalue, such that r is an eigenvalue of .There is a positive real number r, called the Perron root or the Perron-Frobenius eigenvalue, such that r is an eigenvalue
A and any other eigenvalue λ (possibly, complex) is strictly smaller than r in absolute value, $|\lambda|<r$. Thus, the spectral radius $\rho(A)$ is equal to r.
2. The Perron-Frobenius eigenvalue is simple: r is a simple root of the characteristic polynomial of A Consequently, the eigenspace associated to r is one-dimensional. (The same is true for the left eigenspace, i.e., the eigenspace for A^{T}.)
3. There exists an eigenvector $v=\left(v_{1}, \ldots, v_{n}\right)$ of A with eigenvalue r such that all components of v are positive: $A v=r v, v_{i}>0$ for 1 $\leq i \leq n$. (Respectively, there exists a positive left eigenvector $w: w^{\top} A=r w^{\top}, w>0$.)
4. There are no other positive (moreover non-negative) eigenvectors except v (respectively, left eigenvectors except w, i.e. all 4. There are no other positive (moreover non-negative) eigenvectors excopent.
other eigenvectors must have at least one negative or non-real component.
5. $\lim A^{k} / r^{k}=v w^{T}$, where the left and right eigenvectors for A are normalized so that $w^{\top} v=1$. Moreover, the matrix v ${ }_{w}^{k} \vec{T}^{\infty}$ is the projection onto the eigenspace corresponding to r. This projection is called the Perron projection.
6. Collatz-Wielandt formula: for all non-negative non-zero vectors x, let $f(x)$ be the minimum value of $[A x]_{i} / x_{i}$ taken over all those isuch that $x_{i} \neq 0$. Then f is a real valued function whose maximum is the Perron-Frobenius eigenvalue,
7. A "Min-max" Collatz-Wielandt formula takes a form similiar to the one above: for all strictly positive vectors x, let $g(x)$ be the

8. The Perron-Frobenius eigenvalue satisfies the inequalities
$\min _{i} \sum_{j} a_{i j} \leq r \leq \max _{i} \sum_{j} a_{i j}$.

Main points about P-F

- The maximal eigenvalue is strictly maximal (item 1).
- The corresponding eigenvector is "simple" (item 2)
- It has all positive (or negative) components (item 3).
- There is no other eigenvector that can be made non-negative.
- The maximal eigenvalue of a stochastic matrix has absolute value 1 (item 8 applied to stochastic matrix).

Aside on (stochastic) Matrix powers

Summary

$\mathbf{p}^{*}=\mathbf{T} \mathbf{P}^{*}$ is an eigenvector with eigenvalue one.

We have written it as $\mathbf{p}^{*} \| \mathbf{e}^{1}$ because \mathbf{e}^{1} is the eigenvector normalized to norm 1 (standard form).

Intuitively (perhaps), T will reduce any component of p orthogonal to p^{*}, and T^{N} will kill off such components as $\mathrm{N} \rightarrow \infty$.

Algebraic proof

Neal ' 93 provides an algebraic proof which does not rely on spectral theory.
(A question on the final studies this further for those that are interested).

Summary so far

- Under reasonable (easily checked and/or arranged) conditions, our chains converge to an equilibrium state.
- Easiest way to prove (or check) that this is the case is to show detailed balance.
- To use MCMC for sampling a distribution, we simply ensure that our target distribution is the equilibrium state.
- Variations on MCMC are mostly about improving the speed of convergence for particular situations.

Summary so far

- The time it takes to get reasonably close to equilibrium (where samples come from the target distribution) is called "burn in" time.
- I.E., how long does it take to forget the starting state.
- There is no general way to know when this has occurred.
- The average time it takes to visit a state is called "hit time".
- What if we really want independent samples?
- We can take every N^{th} sample (some theories about how long to wait exist, but it depends on the algorithm and distribution)

Metropolis-Hastings MCMC method

```
While not_bored
{
    Sample q(z|z(prev)}
    Accept with probability }A(z,\mp@subsup{z}{}{(\mathrm{ prev) }})=\operatorname{min}(1,\frac{\tilde{p}(z)q(\mp@subsup{z}{}{(\mathrm{ prev) }}|z)}{\tilde{p}(\mp@subsup{z}{}{(\mathrm{ prev) }})q(z|\mp@subsup{z}{}{(\mathrm{ prev) })})}
    If accept, emit z, otherwise, emit z
}
```


Does Metropolis-Hastings have detailed balance?

To show detailed balance we need to show
$p\left(z^{\prime}\right) q\left(z \mid z^{\prime}\right) A\left(z, z^{\prime}\right)=p(z) q\left(z^{\prime} \mid z\right) A\left(z^{\prime}, z\right)$

$$
\begin{aligned}
p\left(z^{\prime}\right) q\left(z \mid z^{\prime}\right) A\left(z, z^{\prime}\right) & =\min \left(p\left(z^{\prime}\right) q\left(z \mid z^{\prime}\right), p(z) q\left(z^{\prime} \mid z\right)\right) \\
& =p(z) q\left(z^{\prime} \mid z\right) \min \left(\frac{q\left(z \mid z^{\prime}\right)}{q\left(z^{\prime} \mid z\right)} \frac{p\left(z^{\prime}\right)}{p(z)}, 1\right) \\
& =p(z) q\left(z^{\prime} \mid z\right) \min \left(1, \frac{p\left(z^{\prime}\right)}{p(z)} \frac{q\left(z \mid z^{\prime}\right)}{q\left(z^{\prime} \mid z\right)}\right) \\
& =p(z) q\left(z^{\prime} \mid z\right) A\left(z^{\prime}, z\right)
\end{aligned}
$$

Does Metropolis-Hastings converge to the target distribution?

If Metropolis-Hastings has detailed balance, then it converges to the target distribution under weak conditions.
(The converse is not true, but generally samplers of interest will have detailed balance).

Metropolis-Hastings comments

- Again it does not matter if we use unnormalized probabilities.
- It should be clear that the previous version, where q() is symmetric, is a special case.

Reversible Jump MH

- Suppose the dimension of your problem is not known (e.g., you want to estimate the number of clusters).
- Sampling now includes "jumping" changes probability space
- Requires a modification to Metropolis Hastings
- Reversible jump MCMC, Green 95, 03
- RJMCMC is only about sampling. It does not tell you the best number of dimensions (e.g., how many clusters).
- This must come from either the prior or the likelihood.

Consider a set of N variables, $x_{1}, x_{1}, \ldots, x_{N}$, Gibbs says

Initialize $\left\{z_{i}^{(0)}: i=1, \ldots, N\right\}$

While not_bored
\{
For $\mathrm{i}=1$ to N
\{
Sample $z_{i}^{(\tau+1)} \sim p\left(z_{i} \mid z_{1}^{(\tau+1)}, \ldots, z_{i-1}^{(\tau+1)}, z_{i+1}^{(\tau)}, \ldots, z_{M}^{(\tau)}\right)$
Always accept (emit $\left.z=z_{1}^{(\tau+1)}, \ldots, z_{i-1}^{(\tau+1)}, z_{i}^{(\tau+1)}, z_{i+1}^{(\tau)}, \ldots, z_{M}^{(\tau)}\right)$
\}
\}

Gibbs sampling

- Gibbs sampling is another special case of MH.
- You might notice that the transition function, $T()$, varies (cycles) over time.
- This is a relaxation of our assumption used to provide intuition about convergence
- However, it still OK because the concatenation of the $T()$ for a cycle converge

Examples of Gibbs

- If one can specify the conditional distributions so that they can be sampled, Gibbs is often a very good method.
- Typical examples include symmetric systems like the Markov random fields we had for images.
- With a Markov property, the conditional probability can be quite simple.

Examples of Gibbs

Gibbs as MH

To see Gibbs as MH, consider that if was MH, then our proposal distribution, $q()$, for a given variable, i, would be
$q_{i}\left(\mathbf{z} \mid \mathbf{z}^{*}\right)=p\left(z_{i} \mid \mathbf{z}_{\backslash \mathrm{i}}^{*}\right) \quad$ and $\quad q_{i}\left(\mathbf{z}^{*} \mid z\right)=p\left(z_{i}^{*} \mid \mathbf{z}_{\backslash \mathrm{i}}\right)$

And we have $\mathbf{z}_{\backslash \mathrm{i}}=\mathbf{z}_{\mathrm{l}_{\mathrm{i}}}^{*}$ because only i changes.

Gibbs as MH

$$
\begin{aligned}
\mathrm{A}\left(\mathbf{z}^{*}, \mathbf{z}\right) & =\frac{p\left(\mathbf{z}^{*}\right) q_{i}\left(\mathbf{z} \mid \mathbf{z}^{*}\right)}{p(\mathbf{z}) q_{i}\left(\mathbf{z}^{*} \mid \mathbf{z}\right)} \\
& =\frac{p\left(\mathbf{z}_{\backslash i}^{*}\right) p\left(z_{i}^{*} \mid \mathbf{z}_{\backslash i}^{*}\right) q_{i}\left(\mathbf{z} \mid \mathbf{z}^{*}\right)}{p\left(\mathbf{z}_{\backslash i}\right) p\left(z_{i} \mid \mathbf{z}_{\backslash i}\right) q_{i}\left(\mathbf{z}^{*} \mid \mathbf{z}\right)} \\
& =\frac{p\left(\mathbf{z}_{\backslash i}^{*}\right) p\left(z_{i}^{*} \mid \mathbf{z}_{\backslash i}^{*}\right) p\left(z_{i} \mid \mathbf{z}_{\mathrm{z}_{\mathrm{i}}}^{*}\right)}{p\left(\mathbf{z}_{\backslash i}\right) p\left(z_{i} \mid \mathbf{z}_{\backslash i}\right) p\left(z_{i}^{*} \mid \mathbf{z}_{\backslash \mathrm{i}}\right)} \\
& =1
\end{aligned}
$$

Exploring the space

- Algorithms like Metropolis-Hastings exhibit "random walk behavior" if the step size (proposal variance) is small
- If the step size is too big, then you get rejected too often
- Adaptive methods exist (see slice sampling in Bishop)
- Another approach is to combine samplers with different properties

Combined samplers

1. Initialise $x^{(0)}$.
2. For $i=0$ to $N-1$

- Sample $u \sim \mathcal{U}_{[0,1]}$.
- If $u<\nu$

Apply the MH algorithm with a global proposal.

- else

Apply the MH algorithm with a random walk proposal.

Annealing

- Analogy with physical systems
- Relevant for optimization (not integration)
- Powers of probability distributions emphasize the peaks
- If we are looking for a maximum within a lot of distracting peaks, this can help.

Annealing

- Define a temperature T, and a cooling schedule (black magic part)
- Lower temperatures correspond to emphasized maximal peaks.
- Hence we exponentiate by (1/T).

Annealing

1. Initialise $x^{(0)}$ and set $T_{0}=1$.
2. For $i=0$ to $N-1$

- Sample $u \sim \mathcal{U}_{[0,1]}$.
- Sample $x^{\star} \sim q\left(x^{\star} \mid x^{(i)}\right)$.
$-\quad$ If $u<\mathcal{A}\left(x^{(i)}, x^{\star}\right)=\min \left\{1, \frac{p^{\frac{1}{T_{i}}\left(x^{\star}\right) q\left(x^{(i)} \mid x^{\star}\right)}}{p^{\frac{1}{T_{i}}}\left(x^{(i)}\right) q\left(x^{\star} \mid x^{(i)}\right)}\right\}$ $x^{(i+1)}=x^{\star}$
else

$$
x^{(i+1)}=x^{(i)}
$$

- Set T_{i+1} according to a chosen cooling schedule.

Continuous versus discrete variables

- Derivatives of continuous distributions can tell you about the structure of your problem.
- Opportunities for going much faster
- Naive approach is gradient ascent with added stochastic properties
- Take a step, then perturb the result.
- Typical approach is to link the probability distribution to a potential energy function
- Follow the system to find low energy (high probability)
- Stochastic sampling via random momentum
- An effective example method is Hybrid Monte Carlo

Hybrid Monte Carlo

- References include Andrieu et al. '01 and Neal'93.
- A more effective example method is Hybrid Monte Carlo
- Link the probability distribution to a potential energy function
- Alternate stochastic sampling with "dynamics".
- The dynamics follow the system to find low energy (high probability)
- HMC is an "auxiliary variable sampler"
- Important trick
- To sample $p(z)$ we sample $p(z, r)$ or $p\left(z, r_{1}, r_{2}, \ldots\right)$
- Ignore the auxiliary variables when we use the samples.

Hamiltonian Dynamics

Recall that the gradient, ∇, is the vector of partial derivatives.

Recall from physics that force is the negative gradient of energy

From before $E(\mathbf{z})=-\log \left(Z_{p}\right)-\log (p(\mathbf{z}))$

So $\nabla E(\mathbf{z})=\nabla(-\log (p(\mathbf{z})))$

Or, in terms of log probabilities, we define
$\Delta(\mathbf{z})=\nabla(\log (p(\mathbf{z})))=-\nabla E(\mathbf{z}) \quad$ (This is the force)

Hamiltonian Dynamics

$p(\mathbf{z})=\frac{1}{Z_{p}} \exp (-E(\mathbf{z})) \quad$ and $\quad \nabla E(\mathbf{z})=\nabla(-\log (p(\mathbf{z})))$

Let \mathbf{r} be the momentum vector for the system. Denote the kinetic energy by $K(\mathbf{r})$.
$K(\mathbf{r})=\frac{1}{2}\|\mathbf{r}\|^{2}=\frac{1}{2} \sum_{i} r_{i}^{2} \quad$ (We assume that mass is one).

Hamiltonian Dynamics

$H(\mathbf{z}, \mathbf{r})=E(\mathbf{z})+K(\mathbf{r}) \quad$ (conserved)

We follow \mathbf{z} according to H with a random \mathbf{r}

This can rapidly transport us towards (but not to)
a local minimun thus avoiding random walk

To follow H, we observe that \mathbf{z} changes proportional
to \mathbf{r}, and \mathbf{r} changes proportion to force $(-\nabla E)$.

Again $-\nabla E=\nabla(\log (p(\mathbf{z}))) \equiv \Delta p(\mathbf{z})$

Hamiltonian Dynamics

$H(\mathbf{z}, \mathbf{r})=E(\mathbf{z})+K(\mathbf{r}) \quad$ (conserved)

Our distribution with auxilary variables is

$$
p(\mathbf{z}, \mathbf{r})=\frac{1}{Z} \exp (-H(\mathbf{z}, \mathbf{r}))
$$

Following Dynamics

In HMC we follow the dynamics for L time steps of size τ (tunable parameters).

In the "leap frog" method for each τ.

1. Take $1 / 2 \mathrm{step}$ in \mathbf{r}.
2. Take a full step in \mathbf{z}.
3. Take $1 / 2 \mathrm{step}$ in \mathbf{r}.

Following Dynamics

For L leap frog steps we have.

1. Take $1 / 2$ step in \mathbf{r}.
2. $(L-1)$ times take a full steps in \mathbf{z}, then \mathbf{r}.
3. Take a full step in \mathbf{z}.
4. Take $1 / 2$ step in \mathbf{r}

Following Dynamics

To take a full step in \mathbf{z}.
$\mathbf{z}(\tau+1)=\mathbf{z}(\tau)+\varepsilon \cdot \Delta(\mathbf{r}(\tau))$
(ε is the step size).

Following Dynamics

To take $1 / 2$ step in \mathbf{r}.
$\mathbf{r}\left(\tau+\frac{1}{2}\right)=\mathbf{r}(\tau)+\frac{1}{2} \varepsilon \cdot \Delta(\mathbf{z}(\tau))$

Where $\Delta(\mathbf{z}(\tau))=\nabla \log (p(\mathbf{z}(\tau)))=-\nabla E(\mathbf{z}) \quad($ force $)$

Following Dynamics

- After L steps of size t , we are at a new point with some bias of being at a lower potential energy (higher probability) and higher momentum.
- Momentum allows us to jump out of wells.

HMC dynamics step acceptance

- If our integration is perfect (i.e., in the limit as $t-->0$) then energy is conserved.
- Thus the value of distribution $\mathrm{p}(\mathbf{z}, \mathbf{r})$ is the same after the dynamics.
- If we assume no integration errors, we simply accept this step
- If we want to account for error accumulation, we accept the result according to:

$$
\min \left(1, \frac{p\left(\mathbf{z}^{*}, \mathbf{r}^{*}\right)}{p(\mathbf{z}, \mathbf{r})}\right)=\min \left(1, \exp \left(H(\mathbf{z}, \mathbf{r})-H\left(\mathbf{z}^{*}, \mathbf{r}^{*}\right)\right)\right)
$$

HMC stochastic step

- Typical instantiations sample the momentum variable
- Two common strategies
- Sample the \mathbf{r} independently from a Gaussian
- Sample r from a Gaussian using Gibbs
- Note that in both of these cases the proposals are always accepted.

Putting it all together (A typical vision lab sampler)

- Discrete variables are sampled using (reversible jump) Metropolis Hastings.
- Continuous variables are sampled using stochastic dynamics (essentially hybrid Monte Carlo).
- Discrete variables typically control topology or components
- The number of components and their type (block, cylinder)
- How components are connected (branches from a stem)

A typical vision lab sampler

- Randomly proposing structure is too expensive because of the high rejection rate.
- Solution (part one) is to use data driven sampling
- Proposals are conditioned on distributions computed before we begin using the data
- For example, the probability of a corner being present in each point in the image.
- Solution (part two) is to delay acceptance
- Adjust continuous parameters using stochastic dynamics so that the proposed structure is a good fit to the data.

A typical vision lab sampler

- We thus alternate between
- (1) data driven proposals for new structure (or to switch or kill existing structure)
- (2) exploring the continuous parameters of the structure
- Additional gains in optimization through having multiple samplers running in parallel exchange information

