66 1. INTRODUCTION

1.40 (») By applying Jensen’s inequality (1.115) with f(z) = Inz, show that the arith-
metic mean of a set of real numbers is never less than their geometrical mean.

1.41 () i Using the sum and product rules of probability, show that the mutual
information 7(x, y) satisfies the relation (1.121).

In Chapter 1, we emphasized the central role played by probability theory in the
solution of pattern recognition problems. We turn now to an exploration of some
particular examples of probability distributions and their properties. As well as be-
ing of great interest in their own right, these distributions can form building blocks
for more complex models and will be used extensively throughout the book. The
distributions introduced in this chapter will also serve another important purpose,
namely to provide us with the opportunity to discuss some key statistical concepts,
such as Bayesian inference, in the context of simple models before we encounter
them in more complex situations in later chapters.

One role for the distributions discussed in this chapter is to model the prob-
ability distribution p(x) of a random variable x, given a finite set x;,...,xy of
observations. This problem is known as density estimation. For the purposes of
this chapter, we shall assume that the data points are independent and identically
distributed. It should be emphasized that the problem of density estimation is fun-
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damentally ill-posed, because there are infinitely many probability distributions that
could have given rise to the observed finite data set. Indeed, any distribution p(x)
that is nonzero at each of the data points x, ..., Xy is a potential candidate. The
issue of choosing an appropriate distribution relates to the problem of model selec-
tion that has already been encountered in the context of polynomial curve fitting in
Chapter I and that is a central issue in pattern recognition.

We begin by considering the binomial and multinomial distributions for discrete
random variables and the Gaussian distribution for continuous random variables.
These are specific examples of parametric distributions, so-called because they are
governed by a small number of adaptive parameters, such as the mean and variance in
the case of a Gaussian for example. To apply such models to the problem of density
estimation, we need a procedure for determining suitable values for the parameters,
given an observed data set. In a frequentist treatment, we choose specific values
for the parameters by optimizing some criterion, such as the likelihood function. By
contrast, in a Bayesian treatment we introduce prior distributions over the parameters
and then use Bayes’ theorem to compute the corresponding posterior distribution
given the observed data.

We shall see that an important role is played by conjugate priors, that lead to
posterior distributions having the same functional form as the prior, and that there-
fore lead to a greatly simplified Bayesian analysis. For example, the conjugate prior
for the parameters of the multinomial distribution is called the Dirichlet distribution,
while the conjugate prior for the mean of a Gaussian is another Gaussian. All of these
distributions are examples of the exponential family of distributions, which possess
a number of important properties, and which will be discussed in some detail.

One limitation of the parametric approach is that it assumes a specific functional
form for the distribution, which may turn out to be inappropriate for a particular
application. An alternative approach is given by nonparametric density estimation
methods in which the form of the distribution typically depends on the size of the data
set. Such models still contain parameters, but these control the model complexity
rather than the form of the distribution. We end this chapter by considering three
nonparametric methods based respectively on histograms, nearest-neighbours, and
kernels.

Binary Variables

We begin by considering a single binary random variable z € {0, 1}. For example,
2 might describe the outcome of flipping a coin, with = = 1 representing ‘heads’,
and x = 0 representing ‘tails’. We can imagine that this is a damaged coin so that
the probability of landing heads is not necessarily the same as that of landing tails.
The probability of @ = 1 will be denoted by the parameter y so that

pla = 1)) = p @1

Exercise 2.1
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where 0 < 1 < 1, from which it follows that p(z = 0|u) = 1 — p. The probability
distribution over & can therefore be written in the form

Bern(x|p) = p*(1 —p)'=* (2.2)

which is known as the Bernoulli distribution. It is easily verified that this distribution
is normalized and that it has mean and variance given by

Elz] = u (2.3)
varfr] = pu(l — p). (2.4)
Now suppose we have a data set D = {xy,..., 2y} of observed values of z.

We can construct the likelihood function, which is a function of /i, on the assumption
that the observations are drawn independently from p(x|u), so that

N N
p(Dlu) = [] pl@nlpw) = T w1 =)', 2.5)

n=1 n=1

In a frequentist setting, we can estimate a value for ;1 by maximizing the likelihood
function, or equivalently by maximizing the logarithm of the likelihood. In the case
of the Bernoulli distribution, the log likelihood function is given by

N N
Inp(D|p) = Zln})(:}:”\u) = Z {xpInp+ (1—x,)In(l —p)}. (2.6)

n=1 n=1

At this point, it is worth noting that the log likelihood function depends on the N
observations x,, only through their sum Z” Z,,. This sum provides an example of a
sufficient statistic for the data under this distribution, and we shall study the impor-
tant role of sufficient statistics in some detail. If we set the derivative of Inp(D|u)
with respect to j equal to zero, we obtain the maximum likelihood estimator

1
ML = 2 ) T @7
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Figure 2.1

Exercise 2.3

Histogram plot of the binomial dis-
tribution (2.9) as a function of m for
N =10and p = 0.25.

02f
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which is also known as the sample mean. If we denote the number of observations
of 2 = 1 (heads) within this data set by m, then we can write (2.7) in the form

m
Hw = ,_\F (2.8)

so that the probability of landing heads is given, in this maximum likelihood frame-
work, by the fraction of observations of heads in the data set.

Now suppose we flip a coin, say, 3 times and happen to observe 3 heads. Then
N = m = 3 and pyy, = 1. In this case, the maximum likelihood result would
predict that all future observations should give heads. Common sense tells us that
this is unreasonable, and in fact this is an extreme example of the over-fitting associ-
ated with maximum likelihood. We shall see shortly how to arrive at more sensible
conclusions through the introduction of a prior distribution over .

We can also work out the distribution of the number m of observations of & = 1,
given that the data set has size N. This is called the hinomial distribution, and
from (2.5) we see that it is proportional to (1 — )V =", In order to obtain the
normalization coefficient we note that out of N coin flips, we have to add up all
of the possible ways of obtaining m heads, so that the binomial distribution can be
written

. NY N,
Bin(m|N, i) = (”_});1"”(1 —p)N-m (2.9)

N NI 210
(m.) - (N —m)!m! G

is the number of ways of choosing m objects out of a total of N identical objects.
Figure 2.1 shows a plot of the binomial distribution for N = 10 and p = 0.25.

The mean and variance of the binomial distribution can be found by using the
result of Exercise 1.10, which shows that for independent events the mean of the
sum is the sum of the means, and the variance of the sum is the sum of the variances.
Because m = x; + ... + &, and for each observation the mean and variance are

where

Exercise 2.4

Exercise 2.5

Exercise 2.6
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given by (2.3) and (2.4), respectively, we have
N
E[m] = Z mBin(m|N, ) = Npu (2.11)
m=0
N
var[m] = Z (m — E[m])* Bin(m|N, ) = Nu(l—p). (2.12)
m=0

These results can also be proved directly using calculus.

2.1.1 The beta distribution

We have seen in (2.8) that the maximum likelihood setting for the parameter 1
in the Bernoulli distribution, and hence in the binomial distribution, is given by the
fraction of the observations in the data set having =z = 1. As we have already noted,
this can give severely over-fitted results for small data sets. In order to develop a
Bayesian treatment for this problem, we need to introduce a prior distribution p( )
over the parameter ;.. Here we consider a form of prior distribution that has a simple
interpretation as well as some useful analytical properties. To motivate this prior,
we note that the likelihood function takes the form of the product of factors of the
form p*(1 — p)' . If we choose a prior to be proportional to powers of 1 and
(1 — 41), then the posterior distribution, which is proportional to the product of the
prior and the likelihood function, will have the same functional form as the prior.
This property is called conjugacy and we will see several examples of it later in this
chapter. We therefore choose a prior, called the beta distribution, given by

['a+0b)
I'(a)T'(h)

where I'(z) is the gamma function defined by (1.141), and the coefficient in (2.13)
ensures that the beta distribution is normalized, so that

Beta(p|a, b) = p 1 = )bt (2.13)

1
/ Beta(p|a, b) dp = 1. (2.14)

Jo

The mean and variance of the beta distribution are given by
a
Elp = 2.15
1] a—+b ( )
!

var(u] = v (2.16)

(@+b)2a+b+1)

The parameters a and b are often called hyperparameters because they control the
distribution of the parameter 1. Figure 2.2 shows plots of the beta distribution for
various values of the hyperparameters.

The posterior distribution of ;¢ is now obtained by multiplying the beta prior
(2.13) by the binomial likelihood function (2.9) and normalizing. Keeping only the
factors that depend on p, we see that this posterior distribution has the form

il anb)isain R Skl coppbib7 (215
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Figure 2.2 Plots of the beta distribution Beta(s:|a, b) given by (2.13) as a function of 4 for various values of the
hyperparameters a and b.

where | = N — m, and therefore corresponds to the number of ‘tails’ in the coin
example. We see that (2.17) has the same functional dependence on ji as the prior
distribution, reflecting the conjugacy properties of the prior with respect to the like-
lihood function. Indeed, it is simply another beta distribution, and its normalization
coefficient can therefore be obtained by comparison with (2.13) to give

im+a+1+4+b)
- (”) +a+ i+ )) ,!.L”H rzfl.(l o 'M)H—b—l.

plpim, i, a,b) = .
plplm, 1, a,b) T(m + aT0 1 b) (2.18)

We see that the effect of observing a data set of m observations of = 1 and
[ observations of & = () has been to increase the value of « by m, and the value of
b by [, in going from the prior distribution to the posterior distribution. This allows
us to provide a simple interpretation of the hyperparameters a and b in the prior as
an effective number of observations of x = 1 and & = 0, respectively. Note that
a and b need not be integers. Furthermore, the posterior distribution can act as the
prior if we subsequently observe additional data. To see this, we can imagine taking
observations one at a time and after each observation updating the current posterior
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Figure 2.3 lllustration of one step of sequential Bayesian inference. The prior is given by a beta distribution
with parameters a = 2, b = 2, and the likelihood function, given by (2.9) with N = m = 1, corresponds to a
single observation of = = 1, so that the posterior is given by a beta distribution with parameters a = 3, b = 2.

Section 2.3.5

distribution by multiplying by the likelihood function for the new observation and
then normalizing to obtain the new, revised posterior distribution. At each stage, the
posterior is a beta distribution with some total number of (prior and actual) observed
values for x = 1 and 2 = 0 given by the parameters a and b. Incorporation of an
additional observation of » = 1 simply corresponds to incrementing the value of a
by 1, whereas for an observation of z = 0 we increment b by 1. Figure 2.3 illustrates
one step in this process.

We see that this sequential approach to learning arises naturally when we adopt
a Bayesian viewpoint. It is independent of the choice of prior and of the likelihood
function and depends only on the assumption of i.i.d. data. Sequential methods make
use of observations one at a time. or in small batches, and then discard them before
the next observations are used. They can be used, for example, in real-time learning
scenarios where a steady stream of data is arriving, and predictions must be made
before all of the data is seen. Because they do not require the whole data set to be
stored or loaded into memory, sequential methods are also useful for large data sets.
Maximum likelihood methods can also be cast into a sequential framework.

If our goal is to predict, as best we can, the outcome of the next trial, then we
must evaluate the predictive distribution of x, given the observed data set . From
the sum and product rules of probability, this takes the form

o1

plx = 1p)plpD)dp = / pp(pD) dp = E[p|D].  (2.19)

0

1
ple =1|D) = /

J0
Using the result (2.18) for the posterior distribution p(|D), together with the result
(2.15) for the mean of the beta distribution, we obtain

m —+ a
m-+a-+1+0b

which has a simple interpretation as the total fraction of observations (both real ob-
servations and fictitious prior observations) that correspond to z = 1. Note that in
the limit of an infinitely large data set m,l — oo the result (2.20) reduces to the
maximum likelihood result (2.8). As we shall see, it is a very general property that
the Bayesian and maximum likelihood results will agree in the limit of an infinitely

plz =1|D) = (2.20)
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Exercise 2.7

Exercise 2.8

2.2.

large data set. For a finite data set, the posterior mean for ;¢ always lies between the
prior mean and the maximum likelihood estimate for ;2 corresponding to the relative
frequencies of events given by (2.7).

From Figure 2.2, we see that as the number of observations increases, so the
posterior distribution becomes more sharply peaked. This can also be seen from
the result (2.16) for the variance of the beta distribution, in which we see that the
variance goes to zero for ¢ — oo or b — oo. In fact, we might wonder whether it is
a general property of Bayesian learning that, as we observe more and more data, the
uncertainty represented by the posterior distribution will steadily decrease.

To address this, we can take a frequentist view of Bayesian learning and show
that, on average, such a property does indeed hold. Consider a general Bayesian
inference problem for a parameter 8 for which we have observed a data set D, de-
scribed by the joint distribution p(6, D). The following result

Eg[0] = Ep [Eg[0|D]] (2.21)

Egl0) = /';)(9)9(19 (2.22)

/‘ { / 0p(0|D) (19} p(D)dD (2.23)

says that the posterior mean of 6, averaged over the distribution generating the data,
is equal to the prior mean of @. Similarly, we can show that

Ep[Ee[0|D]|

varg[0] = Ep [varg[@|D]] + varp [Eg[@|D]] . (2.24)

The term on the left-hand side of (2.24) is the prior variance of #. On the right-
hand side, the first term is the average posterior variance of 8, and the second term
measures the variance in the posterior mean of 8. Because this variance is a positive
quantity, this result shows that, on average, the posterior variance of @ is smaller than
the prior variance. The reduction in variance is greater if the variance in the posterior
mean is greater. Note, however, that this result only holds on average, and that for a
particular observed data set it is possible for the posterior variance to be larger than
the prior variance.

Multinomial Variables

Binary variables can be used to describe quantities that can take one of two possible
values. Often, however, we encounter discrete variables that can take on one of K
possible mutually exclusive states. Although there are various alternative ways to
express such variables, we shall see shortly that a particularly convenient represen-
tation is the 1-of- K" scheme in which the variable is represented by a K -dimensional
vector x in which one of the elements x, equals 1, and all remaining elements equal

Section 2.4
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0. So, for instance if we have a variable that can take K = 6 states and a particular
observation of the variable happens to correspond to the state where x5 = 1, then x

will be represented by
x = (0,0,1,0,0,0)T. (2.25)

Note that such vectors satisfy Z.{f:l xp = 1. If we denote the probability of z;, =1
by the parameter /iy, then the distribution of x is given

K
p(x|p) = [ ] i (2.26)
k=1
where gt = (pt1. ..., prec) ", and the parameters yuy, are constrained to satisfy ju, = 0

and >, = 1, because they represent probabilities. The distribution (2.26) can be
regarded as a generalization of the Bernoulli distribution to more than two outcomes.
It is easily seen that the distribution is normalized

K
Z})(xhu) = Z,(t;,- =1 (2.27)
X k=1
and that ~
Elx|p) =Y pxX|w)x = (1, o)™ = g (2.28)
Now consider a data set D of N independent observations x,...,xy. The

corresponding likelihood function takes the form

N K

K K
p@lp) =[] [T ri = HuEZ” o) | S (2.29)
k=1

n=1 k=1 k=1

We see that the likelihood function depends on the N data points only through the
K quantities
my = Z:L‘,,,,z_, (2.30)
n

which represent the number of observations of ;. = 1. These are called the sufficient
statistics for this distribution.

In order to find the maximum likelihood solution for g, we need to maximize
In p(D| ) with respect to i, taking account of the constraint that the ¢, must sum
to one. This can be achieved using a Lagrange multiplier A and maximizing

K K
Z my In g + A (Z e — 'l) ; (2.31)
k=1 k=1

Setting the derivative of (2.31) with respect to yi;, to zero, we obtain

M = —mg/ A (2:39)
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Exercise 2.9

We can solve for the Lagrange multiplier A by substituting (2.32) into the constraint

> p ik = 1to give A = —N. Thus we obtain the maximum likelihood solution in
the form o
= =% (2.33)
N
which is the fraction of the N observations for which zp = 1.
We can consider the joint distribution of the quantitics m,., . .., m, conditioned

on the parameters g and on the total number N of observations. From (2.29) this
takes the form

K
N !
Mult(my, mo, ..o |, N) = (m - ms ) | | e (2.34)
1My . TN
k=1

which is known as the multinomial distribution. The normalization coefficient is the
number of ways of partitioning N objects into K groups of size my, ..., my and is

given by
N N1
e (2.35)
MM ... TN malma! o]

Note that the variables my, are subject to the constraint

K

Z-mk = N. (2.36)

k=1
2.2.1 The Dirichlet distribution

We now introduce a family of prior distributions for the parameters {y} of
the multinomial distribution (2.34). By inspection of the form of the multinomial
distribution, we see that the conjugate prior is given by

K
p(pla) oc [T mgs ! (2.37)

k=1
where 0 < g < 1 and Zk (. = 1. Here av, ..., «p are the parameters of the
distribution, and « denotes (o, ...,ax)". Note that, because of the summation

constraint, the distribution over the space of the {} is confined to a simplex of
dimensionality X' — 1, as illustrated for /' = 3 in Figure 2.4.
The normalized form for this distribution is by

I'(

K
: ﬂ'ﬂ) o —1
D - [ | " 2.38

ir(pler) I(ay) - D(ag) k=1 & ( :

which is called the Dirichlet distribution. Here I'() is the gamma function defined
by (1.141) while

K
a=> . (2.39)

=il

Figure 2.4 The Dirichlet distribution over three variables 1, j2, i3 M2y
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is confined to a simplex (a bounded linear manifold) of
the form shown, as a consequence of the constraints
0< s <landd, e =1

3

Plots of the Dirichlet distribution over the simplex, for various settings of the param-

eters a, are shown in Figure 2.5.
Multiplying the prior (2.38) by the likelihood function (2.34), we obtain the
posterior distribution for the parameters {4} in the form

K

p(u|D, ) o p(D|p)p(pler) o [Tt (2.40)
k=1

We see that the posterior distribution again takes the form of a Dirichlet distribution,
confirming that the Dirichlet is indeed a conjugate prior for the multinomial. This
allows us to determine the normalization coefficient by comparison with (2.38) so
that

Dir(p|c + m)

.F(Otg -+ N) Hﬂgk+mkfl (2.41)
Doy +my) - -T(ag +mg) b

p(p|D, o)
K

where we have denoted m = (my,...,m k)T, As for the case of the binomial
distribution with its beta prior, we can interpret the parameters oy, of the Dirichlet
prior as an effective number of observations of zj = 1.

Note that two-state quantities can either be represented as binary variables and




78 2. PROBABILITY DISTRIBUTIONS " 2.3. The Gaussian Distribution 79
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1 Figure 2.6 Histogram plots of the mean of N uniformly distributed numbers for various values of N. We
\ observe that as N increases, the distribution tends towards a Gaussian.

Figure 2.5 Plots of the Dirichlet distribution over three variables, where the two horizontal axes are coordinates | illustrate this by considering N variables x1, ...,y each of which has a uniform
in the plane of the simplex and the vertical axis corresponds to the value of the density. Here {a.} = 0.1 on the distribution over the interval [0, 1] and then considering the distribution of the mean
left plot, {c} = 1in the centre plot, and {ax} = 10 in the right plot. | (€1 + -+ an)/N. For large N, this distribution tends to a Gaussian, as illustrated

in Figure 2.6. In practice, the convergence to a Gaussian as N increases can be
very rapid. One consequence of this result is that the binomial distribution (2.9),
which is a distribution over m defined by the sum of N observations of the random
binary variable x, will tend to a Gaussian as N — oo (see Figure 2.1 for the case of
N =10).

The Gaussian distribution has many important analytical properties, and we shall
consider several of these in detail. As a result, this section will be rather more tech-
nically involved than some of the earlier sections, and will require familiarity with

modelled using the binomial distribution (2.9) or as 1-of-2 variables and modelled
using the multinomial distribution (2.34) with K = 2,

2.3. The Gaussian Distribution

The Gaussian, also known as the normal distribution, is a widely used model for the Appendix C various matrix identities. However, we strongly encourage the reader to become pro-
distr?bution of continuous variabk::s. In the case of a single variable z, the Gaussian ficient in manipulating Gaussian distributions using the techniques presented here as
distribution can be written in the form this will prove invaluable in understanding the more complex models presented in
‘ 1 1 ater chapters
N (z|p,0?) = W exp { 957 (z — p)? } (2.42) We begin by considering the geometrical form of the Gaussian distribution. The
o

where 1 is the mean and o is the variance. For a D-dimensional vector x, the | TT—
multivariate Gaussian distribution takes the form “Carl Fnednch Gauss

1 1 1 o
N(XIP«,Z)—WWCXP{—§(X—M)IE_I(XM)} (2.43)

where g is a D-dimensional mean vector, 3 is a ) x ) covariance matrix, and |X|
denotes the determinant of X.
The Gaussian distribution arises in many different contexts and can be motivated

Section 1.6 from a variety of different perspectives. For example, we have already seen that for
a single real variable, the distribution that maximizes the entropy is the Gaussian.
Exercise 2.14 This property applies also to the multivariate Gaussian.

Another situation in which the Gaussian distribution arises is when we consider
the sum of multiple random variables. The central limit theorem (due to Laplace)
tells us that, subject to certain mild conditions, the sum of a set of random variables,
which is of course itself a random variable, has a distribution that becomes increas-
ingly Gaussian as the number of terms in the sum increases (Walker, 1969). We can
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Exercise 2.17

Exercise 2.18

Exercise 2.19

functional dependence of the Gaussian on x is through the quadratic form
A= (x—p)"S Hx—p) (2.44)

which appears in the exponent. The quantity A is called the Mahalanobis distance
from i to x and reduces to the Euclidean distance when X is the identity matrix. The
Gaussian distribution will be constant on surfaces in x-space for which this quadratic
form is constant.

First of all, we note that the matrix X can be taken to be symmetric, without
loss of generality, because any antisymmetric component would disappear from the
exponent. Now consider the eigenvector equation for the covariance matrix

Eui — /\.,-;U?; (245)

where i = 1,..., D. Because X is a real, symmetric matrix its eigenvalues will be
real, and its eigenvectors can be chosen to form an orthonormal set, so that

where I;; is the , j element of the identity matrix and satisfies

(1, ifi=j
Tij = { 0, otherwise. (2.47)

The covariance matrix X can be expressed as an expansion in terms of its eigenvec-
tors in the form

b Z Augul (2.48)
and similarly the inverse covariance matrix X' can be expressed as
Lz
o7 =) —uuf 2.49
z;hzz (2.49)

Substituting (2.49) into (2.44), the quadratic form becomes

D e
A2 = il 2.50

where we have defined
yi = ul (x — ). (2.51)

We can interpret {y; } as a new coordinate system defined by the orthonormal vectors
u; that are shifted and rotated with respect to the original z; coordinates. Forming
the vectory = (yi,...,yp)", we have

y=U(x—pu) (2.52)

Figure 2.7 The red curve shows the ellip- %2
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tical surface of constant proba-
bility density for a Gaussian in
a two-dimensional space x =
(z1,2z2) on which the density
is exp(—1/2) of its value at
x = p. The major axes of
the ellipse are defined by the
eigenvectors u, of the covari-
ance matrix, with correspond-
ing eigenvalues ;.

where U is a matrix whose rows are given by u;. From (2.46) it follows that U is
an orthogonal matrix, i.e., it satisfies UUT = I, and hence also UTU = I, where I
is the identity matrix.

The quadratic form, and hence the Gaussian density, will be constant on surfaces
for which (2.51) is constant. If all of the eigenvalues A; are positive, then these
surfaces represent ellipsoids, with their centres at p and their axes oriented along u;,
and with scaling factors in the directions of the axes given by ,\;/2, as illustrated in
Figure 2.7.

For the Gaussian distribution to be well defined, it is necessary for all of the
eigenvalues A; of the covariance matrix to be strictly positive, otherwise the dis-
tribution cannot be properly normalized. A matrix whose eigenvalues are strictly
positive is said to be positive definite. In Chapter 12, we will encounter Gaussian
distributions for which one or more of the eigenvalues are zero, in which case the
distribution is singular and is confined to a subspace of lower dimensionality. If all
of the eigenvalues are nonnegative, then the covariance matrix is said to be positive
semidefinite.

Now consider the form of the Gaussian distribution in the new coordinate system
defined by the y;. In going from the x to the y coordinate system, we have a Jacobian
matrix J with elements given by

Ox;
Jii = =U,, 2.53
J aqj J ( )

where U;; are the elements of the matrix U™, Using the orthonormality property of
the matrix U, we see that the square of the determinant of the Jacobian matrix is

I = [0 = U] U = |UTU| = =1 S

and hence |J| = 1. Also, the determinant || of the covariance matrix can be written
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as the product of its eigenvalues, and hence

D
=2 =T (2.55)
q=1

Thus in the y; coordinate system, the Gaussian distribution takes the form

D 2
1 ys

p(y) =p(x)J| = | | 5775 exp {——’} (2.56)
J]';II (QTT/\J)I/Z 2/\7

which is the product of D) independent univariate Gaussian distributions. The eigen-
vectors therefore define a new set of shifted and rotated coordinates with respect
to which the joint probability distribution factorizes into a product of independent
distributions. The integral of the distribution in the y coordinate system is then

/p dy = H/ (2rh, |/>(‘{I){_K} dy; =1 (2.57)

where we have used the result (1.48) for the normalization of the univariate Gaussian.
This confirms that the multivariate Gaussian (2.43) is indeed normalized.

We now look at the moments of the Gaussian distribution and thereby provide an
interpretation of the parameters g and 3. The expectation of x under the Gaussian
distribution is given by

Ex] = (27;“/3 lel/) /'cxp {—‘l(x — )T (x — ,u)} x dx
1
)

1 ' 1 e
on D/z|2||/>/ ,X1>{2z b3} z}(z+y,)dz (2.58)

where we have changed variables using z = x — g&. We now note that the exponent
is an even function of the components of z and, because the integrals over these are
taken over the range (—o0,00), the term in z in the factor (z + p) will vanish by
symmetry. Thus

]

|

Elx| = p (2.59)

and so we refer to g as the mean of the Gaussian distribution,

We now consider second order moments of the Gaussian. In the univariate case,
we considered the second order moment given by E[2?]. For the multivariate Gaus-
sian, there are D? second order moments given by E[z;x;], which we can group
together to form the matrix E[xx"|. This matrix can be written as

T 1 L ' 1 Ty -1 s
E[xx ]:WIEP”/CXP{Q(X'”) X (x—,u,)}xx dx -

1! 1 : 1 i
" WIEP/?/EXP{QZTE lz} (z+ p)(z+ )"
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where again we have chdnged variables using z = x — . Note that the cross-terms
involving pz”™ and p"z will again vanish by symmetry. The term ppe™ is constant
and can be taken outside the integral, which itself is unity because the Gaussian
distribution is normalized. Consider the term involving zz™. Again, we can make
use of the eigenvector expansion of the covariance matrix given by (2.45), together
with the completeness of the set of eigenvectors, to write

D
=D Ui (2.60)
7=1

where y; = uj z, which gives
1 1 IS
%—Dﬂm—lﬂ/exp{é—z > Z}ZZ dz

. pioh 4
_ Y
T (e !)/.2 Jz‘l/z ZZ“ uj /OXP {_ Z ﬂ} yiy; dy

i=1 7=1

D
= > wuly =% 2.61)

=1

where we have made use of the eigenvector equation (2.45), together with the fact
that the integral on the right-hand side of the middle line vanishes by symmetry
unless i = j, and in the final line we have made use of the results (1.50) and (2.55),
together with (2.48). Thus we have

E[xx"] = pu” + 2. (2.62)

For single random variables, we subtracted the mean before taking second mo-
ments in order to define a variance. Similarly, in the multivariate case it is again
convenient to subtract off the mean, giving rise to the covariance of a random vector
x defined by

covlx] = E [(x — E[x])(x — E[x])"]. (2.63)

For the specific case of a Gaussian distribution, we can make use of E[x] = p,
together with the result (2.62), to give

cov[x] = . (2.64)

Because the parameter matrix X governs the covariance of x under the Gaussian
distribution, it is called the covariance matrix.

Although the Gaussian distribution (2.43) is widely used as a density model, it
suffers from some significant limitations. Consider the number of free parameters in
the distribution. A general symmetric covariance matrix 3 will have D(D+1)/2
independent parameters, and there are another D independent parameters in p, giv-
ing D(D + 3)/2 parameters in total. For large D, the total number of parameters
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Figure 2.8 Contours of constant x4 T Tok
probability density for a Gaussian
distribution in two dimensions in
which the covariance matrix is (a) of
general form, (b) diagonal, in which
the elliptical contours are aligned

with the coordinate axes, and (c) T T T

proportional to the identity matrix, in > >
which the contours are concentric

circles.
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therefore grows quadratically with D), and the computational task of manipulating
and inverting large matrices can become prohibitive. One way to address this prob-
lem is to use restricted forms of the covariance matrix. If we consider covariance
matrices that are diagonal, so that ¥ = diag(o?), we then have a total of 2D inde-
pendent parameters in the density model. The corresponding contours of constant
density are given by axis-aligned ellipsoids. We could further restrict the covariance
matrix to be proportional to the identity matrix, 3 = oI, known as an isotropic co-
variance, giving D + 1 independent parameters in the model and spherical surfaces
of constant density. The three possibilities of general, diagonal, and isotropic covari-
ance matrices are illustrated in Figure 2.8. Unfortunately, whereas such approaches
limit the number of degrees of freedom in the distribution and make inversion of the
covariance matrix a much faster operation, they also greatly restrict the form of the
probability density and limit its ability to capture interesting correlations in the data.

A further limitation of the Gaussian distribution is that it is intrinsically uni-
modal (i.e., has a single maximum) and so is unable to provide a good approximation
to multimodal distributions. Thus the Gaussian distribution can be both too flexible,
in the sense of having too many parameters, while also being too limited in the range
of distributions that it can adequately represent. We will see later that the introduc-
tion of latent variables, also called hidden variables or unobserved variables, allows
both of these problems to be addressed. In particular, a rich family of multimodal
distributions is obtained by introducing discrete latent variables leading to mixtures
of Gaussians, as discussed in Section 2.3.9. Similarly, the introduction of continuous
latent variables, as described in Chapter 12, leads to models in which the number of
free parameters can be controlled independently of the dimensionality [ of the data
space while still allowing the model to capture the dominant correlations in the data
set. Indeed, these two approaches can be combined and further extended to derive
a very rich set of hierarchical models that can be adapted to a broad range of prac-
tical applications. For instance, the Gaussian version of the Markov random field,
which is widely used as a probabilistic model of images, is a Gaussian distribution
over the joint space of pixel intensities but rendered tractable through the imposition
of considerable structure reflecting the spatial organization of the pixels. Similarly,
the linear dynamical system, used to model time series data for applications such
as tracking, is also a joint Gaussian distribution over a potentially large number of
observed and latent variables and again is tractable due to the structure imposed on
the distribution. A powerful framework for expressing the form and properties of
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such complex distributions is that of probabilistic graphical models, which will form
the subject of Chapter 8.

2.3.1 Conditional Gaussian distributions

An important property of the multivariate Gaussian distribution is that if two
sets of variables are jointly Gaussian, then the conditional distribution of one set
conditioned on the other is again Gaussian. Similarly, the marginal distribution of
either set is also Gaussian.

Consider first the case of conditional distributions. Suppose x is a D-dimensional
vector with Gaussian distribution N (x|gz, ) and that we partition x into two dis-
joint subsets x,, and x;. Without loss of generality, we can take x,, to form the first
M components of x, with x;, comprising the remaining D — M components, so that

[ x, i
x={ ). (2.65)

We also define corresponding partitions of the mean vector g given by

J— “!l.
- 2.66
H (Mb) ( ))
and of the covariance matrix 3 given by
b ot
E — aa an . 2,
(Ebm Ehh) ( 67)
Note that the symmetry 2T = 3 of the covariance matrix implies that 3, and 3,

are symmetric, while 2;, = E(Im

In many situations, it will be convenient to work with the inverse of the covari-
ance matrix
— -1
A=X (2.68)

which is known as the precision matrix. In fact, we shall see that some properties
of Gaussian distributions are most naturally expressed in terms of the covariance,
whereas others take a simpler form when viewed in terms of the precision. We
therefore also introduce the partitioned form of the precision matrix

. Arm. Aub Q
A (Aha Abb) 05
corresponding to the partitioning (2.65) of the vector x. Because the inverse of a
symmetric matrix is also symmetric, we see that A, and A, are symmetric, while
A.ab = Ayq. It should be stressed at this point that, for instance, A, is not simply
given by the inverse of X,. In fact, we shall shortly examine the relation between
the inverse of a partitioned matrix and the inverses of its partitions.

Let us begin by finding an expression for the conditional distribution p(x,|x).
From the product rule of probability, we see that this conditional distribution can be
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evaluated from the joint distribution p(x) = p(x,, %) simply by fixing x; to the
observed value and normalizing the resulting expression to obtain a valid probability
distribution over x,. Instead of performing this normalization explicitly, we can
obtain the solution more efficiently by considering the quadratic form in the exponent
of the Gaussian distribution given by (2.44) and then reinstating the normalization
coefficient at the end of the calculation. If we make use of the partitioning (2.65),
(2.66), and (2.69), we obtain

5= ) TS - ) =

1 T 1 T
—(X“ = ﬂ'a) ] A(m(xa - y’(z,) - _(Xfi - lu’(L) lA”-b(Xb = f"’b}

. ) 5
1 o 1 -
7‘_2-{Xb - ru'b) : Abra(xa - p‘a) o E(Xfﬂ - p’b) lAbb(xb - nu‘b)' (2.70)

We see that as a function of x,,, this is again a quadratic form, and hence the cor-
responding conditional distribution p(x,|xp) will be Gaussian. Because this distri-
bution is completely characterized by its mean and its covariance, our goal will be
to identify expressions for the mean and covariance of p(x,|x;) by inspection of
(2.70).

This is an example of a rather common operation associated with Gaussian
distributions, sometimes called ‘completing the square’, in which we are given a
quadratic form defining the exponent terms in a Gaussian distribution, and we need
to determine the corresponding mean and covariance. Such problems can be solved
straightforwardly by noting that the exponent in a general Gaussian distribution
N (x|p, X) can be written

! Tr—1 L — Tyr—1 ,

—E(x—u) 3 (x—u):—ﬁx x4+ x X+ const (2.71)
where ‘const’ denotes terms which are independent of x, and we have made use of
the symmetry of 3. Thus if we take our general quadratic form and express it in
the form given by the right-hand side of (2.71), then we can immediately equate the
matrix of coefficients entering the second order term in x to the inverse covariance
matrix X" and the coefficient of the linear term in x to 3~ g, from which we can
obtain fs.

Now let us apply this procedure to the conditional Gaussian distribution p(x, |x;)
for which the quadratic form in the exponent is given by (2.70). We will denote the
mean and covariance of this distribution by 1, and X, respectively. Consider
the functional dependence of (2.70) on x, in which x; is regarded as a constant. If
we pick out all terms that are second order in x,, we have

1
_EXIA(I!LXG. (272)

from which we can immediately conclude that the covariance (inverse precision) of

p(xq|Xp) is given by il
Sap = AZL (2.73)
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Now consider all of the terms in (2.70) that are linear in >N

X;f {Aaaﬂa - Aub(xh s U’b)} (2.74)

T . »
where we have used A, = A,;. From our discussion of the general form (2.71),
the coefficient of x, in this expression must equal E;‘i i), and hence
JoHal

Hap = z:alb {Aaaﬂ'a = Aa.h(xb - ,U'b)}
o |
= o — Ay Aup(xp — ) (2.75)
where we have made use of (2.73).

The t.'esu]ts (2.73) and (2.75) are expressed in terms of the partitioned precision
matrix of the original joint distribution p(x,,x;,). We can also express these results
m‘lcrm_s of the corresponding partitioned covariance matrix. To do this, we make use
of the following identity for the inverse of a partitioned matrix

A B\ ' M ~MBD"!
¢ b/ ~|(-D'cM D!4+D'CMBD (2.76)

where we have defined
M= (A-BD'C) " (2.77)

Thc qqumily M~ is known as the Schur complement of the matrix on the left-hand
side of (2.76) with respect to the submatrix D. Using the definition

—1
Erm Erab o A(m Aub
(Zﬂm 2[}!’)) N (Abu A—bh) (278)
and making use of (2.76), we have

A(m = (Zcm - Zabzfﬂ,l Ebn)il (2.79)
Anh = ﬁ(Eua - En,bz,;blz]bu,) 712(1’?)25)7{)‘ . (280)

From these we obtain the following expressions for the mean and covariance of the
conditional distribution p(x,[x;)

Hop = Myt Eabz&l (Xh - ;Ub) (2.81)
Zap = Baa — TanZEg D (2.82)

Cor_nparing (2.73) and (2.82), we see that the conditional distribution p(x,|xp) takes
a simpler form when expressed in terms of the partitioned precision matrix than
when it is expressed in terms of the partitioned covariance matrix. Note that the
mean of the conditional distribution P(Xq|xp), given by (2.81), is a linear function of
Xp and that the covariance, given by (2.82), is independent of x,,. This represents an
example of a linear-Gaussian model.
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2.3.2 Marginal Gaussian distributions

We have seen that if a joint distribution p(x,, x;) is Gaussian, then the condi-
tional distribution p(x,|x;) will again be Gaussian. Now we turn to a discussion of
the marginal distribution given by

p(xa) = f P(Xa, xp) dxp (2.83)

which, as we shall see, is also Gaussian. Once again, our strategy for evaluating this
distribution efficiently will be to focus on the quadratic form in the exponent of the
joint distribution and thereby to identify the mean and covariance of the marginal
distribution p(x,).

The quadratic form for the joint distribution can be expressed, using the par-
titioned precision matrix, in the form (2.70). Because our goal is to integrate out
Xy, this is most easily achieved by first considering the terms involving x; and then
completing the square in order to facilitate integration. Picking out just those terms
that involve x;, we have

1 4 . 1 _ . _ 1 +, _
_ix,f Am,xb-O-xE{ m = =5 (x;,—Ahh'm) YA (x —A,},}' m)- Em' Ahbl m (2.84)

where we have defined
m = ADMJ’b - Abrt(xu, = Ju‘u,)' (285)

We see that the dependence on x;, has been cast into the standard quadratic form of a
Gaussian distribution corresponding to the first term on the right-hand side of (2.84),
plus a term that does not depend on x; (but that does depend on x,). Thus, when
we take the exponential of this quadratic form, we see that the integration over xy,
required by (2.83) will take the form

1 o .
/exp {—E(Xb - A;bj m) " Ay (xy — A,:'hlm)} dxy,. (2.86)

This integration is easily performed by noting that it is the integral over an unnor-
malized Gaussian, and so the result will be the reciprocal of the normalization co-
efficient. We know from the form of the normalized Gaussian given by (2.43), that
this coefficient is independent of the mean and depends only on the determinant of
the covariance matrix. Thus, by completing the square with respect to x;, we can
integrate out x;, and the only term remaining from the contributions on the left-hand
side of (2.84) that depends on x, is the last term on the right-hand side of (2.84) in
which m is given by (2.85). Combining this term with the remaining terms from
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(2.70) that depend on x,, we obtain
1 T .
i {Abblu'b — Apg (xa = #’a” . Abbl [Abbﬂb - Aba(xa - ”aﬂ
1.
—§XIAaaxa + xE(Aaaua + Aappty) + const

1
= 5% (Aua = AwpAy Ava)xq
+xT (Aa — Ay Az Apa) ™ pt, + const 28l)

where ‘const’ denotes quantities independent of x,. Again, by comparison with
(2.71), we see that the covariance of the marginal distribution of p(x,) is given by

3= (Arl.a - AubA-‘l;yrlA-ba)_ " (288)
Similarly, the mean is given by
EcL(Arm - Ar:,bA,;J]Aha).u“ = K, (2.89)

where we have used (2.88). The covariance in (2.88) is expressed in terms of the
partitioned precision matrix given by (2.69). We can rewrite this in terms of the
corresponding partitioning of the covariance matrix given by (2.67), as we did for
the conditional distribution. These partitioned matrices are related by

-1
Au‘u Am'; o Erm Em';
(Abu. A];b) - (2;)” EM}) (290)

Making use of (2.76), we then have
(AH.(L . Ar:bAb_b] A('m) - = Eruw (291)

Thus we obtain the intuitively satisfying result that the marginal distribution p(x,)
has mean and covariance given by
Ex. = pn, (2.92)
cov(x,] = . (2.93)
We see that for a marginal distribution, the mean and covariance are most simply ex-
pressed in terms of the partitioned covariance matrix, in contrast to the conditional
distribution for which the partitioned precision matrix gives rise to simpler expres-
sions.

Our results for the marginal and conditional distributions of a partitioned Gaus-
sian are summarized below.

Partitioned Gaussians

Given a joint Gaussian distribution (x|, £) with A = 3" and

A ) _ ( Ha
x = (Xb) Pl (”b) (2.94)
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Figure 2.9 The plot on the left shows the contours of a Gaussian distribution p(za, ) over two variables, and
the plot on the right shows the marginal distribution p(x.) (blue curve) and the conditicnal distribution p(xa|zn)

for @, = 0.7 (red curve).

2= (3 B a-(he ). ey

Conditional distribution:
pxalxs) = N(xXltgppr ) (296)
Bap = Po — Mg Man (X5 — ). (2.97)

Marginal distribution:

p(xa) = N(Xa|tty Baa)- (2.98)

We illustrate the idea of conditional and marginal distributions associated with
a multivariate Gaussian using an example involving two variables in Figure 2.9.

2.3.3 Bayes’ theorem for Gaussian variables

In Sections 2.3.1 and 2.3.2, we considered a Gaussian p(x) in which we parti-
tioned the vector x into two subvectors x = (x,,X;) and then found expressions for
the conditional distribution p(x,|x;) and the marginal distribution p(x,). We noted
that the mean of the conditional distribution p(x(,,‘|xb) was a linear function of xj.
Here we shall suppose that we are given a Gaussian marginal distribution p(x) qnd a
Gaussian conditional distribution p(y|x) in which p(y|x) has a mean that is a linear
function of x, and a covariance which is independent of x. This is an example of
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a linear Gaussian model (Roweis and Ghahramani, 1999), which we shall study in

greater generality in Section 8.1.4. We wish to find the marginal distribution p(y)

and the conditional distribution p(x|y). This is a problem that will arise frequently

in subsequent chapters, and it will prove convenient to derive the general results here.
We shall take the marginal and conditional distributions to be

px) = N (x|p, A7) (2.99)
p(y|x) N (y|Ax + b, L) (2.100)

where p1, A, and b are parameters governing the means, and A and L are precision
matrices. If x has dimensionality A/ and y has dimensionality D, then the matrix A
has size D x M.

First we find an expression for the joint distribution over x and y. To do this, we

define
X
7 = 2.101
. (y) @.101)

and then consider the log of the joint distribution

Inp(z) = Inp(x)+ Inp(y|x)
1 -
= 5= A p)
1 N
~5(y —Ax—b) "L(y — Ax —b) +const  (2.102)

where ‘const” denotes terms independent of x and y. As before, we see that this is a
quadratic function of the components of z, and hence p(z) is Gaussian distribution.
To find the precision of this Gaussian, we consider the second order terms in (2.102),
which can be written as

1 - 1 1 . 1 .
fﬁx“ (A+A"LA)x — 5yTLy + 5yq LAx + 5xTA "Ly

T
_ 1 (x\ (A+ATLA -ATL\ (x\ 1,

and so the Gaussian distribution over z has precision (inverse covariance) matrix
given by

(2.104)

R_ (A+ATLA -ATL
-\ LA L /-

The covariance matrix is found by taking the inverse of the precision, which can be
done using the matrix inversion formula (2.76) to give

af At ATIAT
sondli— B — (AAI il +AA1AT) : (2.105)
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Similarly, we can find the mean of the Gaussian distribution over z by identify-
ing the linear terms in (2.102), which are given by

. i
xTAp — xTATLb + y"Lb = (’;) (A“’ —L*ﬁ Lb) . (2.106)

Using our earlier result (2.71) obtained by completing the square over the quadratic
form of a multivariate Gaussian, we find that the mean of z is given by

AT
Ap— A Lb), (2.107)

E[z] =R ( Lb

Making use of (2.105), we then obtain

E[z] = (A}:{l' b) : (2.108)

Next we find an expression for the marginal distribution p(y) in which we have
marginalized over x. Recall that the marginal distribution over a subset of the com-
ponents of a Gaussian random vector takes a particularly simple form when ex-
pressed in terms of the partitioned covariance matrix. Specifically, its mean and
covariance are given by (2.92) and (2.93), respectively. Making use of (2.105) and
(2.108) we see that the mean and covariance of the marginal distribution p(y) are
given by

Ely] Ap+b (2.109)
covly] = L'+ AATTAT. (2.110)

A special case of this result is when A = T, in which case it reduces to the convolu-
tion of two Gaussians, for which we see that the mean of the convolution is the sum
of the mean of the two Gaussians, and the covariance of the convolution is the sum
of their covariances.

Finally, we seek an expression for the conditional p(x|y). Recall that the results
for the conditional distribution are most easily expressed in terms of the partitioned
precision matrix, using (2.73) and (2.75). Applying these results to (2.105) and
(2.108) we see that the conditional distribution p(x|y) has mean and covariance
given by

Exly] = (A+ATLA)"'{A"L(y —b) +Apl @2.111)
covlxly] = (A+ATLA)™ (2.112)

The evaluation of this conditional can be seen as an example of Bayes’ theorem.
We can interpret the distribution p(x) as a prior distribution over x. If the variable
y is observed, then the conditional distribution p(x|y) represents the corresponding
posterior distribution over x. Having found the marginal and conditional distribu-
tions, we effectively expressed the joint distribution p(z) = p(x)p(y|x) in the form
p(x|y)p(y). These results are summarized below.

Appendix C
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Marginal and Conditional Gaussians

Gi\ien a marginal Gaussian distribution for x and a conditional Gaussian distri-
bution for y given x in the form

p(x) = N(x|p, A7) (2.113)
plylx) = N(ylAx+b, L") (2.114)
the marginal distribution of y and the conditional distribution of x given y are

given by
ply) = N(y|[Ap+b, L'+ AAT'AT) (2.115)
p(xly) = N(Z{ATL(y —b)+Au}, %) (2.116)

where

¥ =(A+A"LA) @117

2.3.4 Maximum likelihood for the Gaussian

Given a data set X = (xq,...,xy)" in which the observations {x, } are as-
sumed to be drawn independently from a multivariate Gaussian distribution, we can
estimate the parameters of the distribution by maximum likelihood. The log likeli-
hood function is given by

ND, . N e
Inp(X|p, B) = =~ In(2m)— 5 n[%|-3 > =) S (- p). (2.118)

n=1

By simple rearrangement, we see that the likelihood function depends on the data set
only through the two quantities

N
Zx”, Zx,,,zx:. (2.119)

n=I1 n=I1

These are knoyvn as the sufficient statistics for the Gaussian distribution. Using
(C.19), the derivative of the log likelihood with respect to g is given by

) N
o Inp(X|p, X) => T (xy — p) (2.120)

n=1

anf:l setting this derivative to zero, we obtain the solution for the maximum likelihood
estimate of the mean given by

N
1
P, = N;xn 2.121)
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which is the mean of the observed set of data points. The maximization of (2.118)
with respect to X is rather more involved. The simplest approach is to ignore the
symmetry constraint and show that the resulting solution is symmetric as required.
Alternative derivations of this result, which impose the symmetry and positive defi-
niteness constraints explicitly, can be found in Magnus and Neudecker (1999). The
result is as expected and takes the form

N
1 -
ML = N Z(Xn - MML)(Xn - MML)l (2.122)

n=1

which involves pi,;;, because this is the result of a joint maximization with respect
to i and 2. Note that the solution (2.121) for gy, does not depend on Xy, and so
we can first evaluate g, and then use this to evaluate 3y,

If we evaluate the expectations of the maximum likelihood solutions under the
true distribution, we obtain the following results

(2.123)
E[Ew)] = ——X. (2.124)

We see that the expectation of the maximum likelihood estimate for the mean is equal
to the true mean. However, the maximum likelihood estimate for the covariance has
an expectation that is less than the true value, and hence it is biased. We can correct

this bias by defining a different estimator 3 given by

N
~ l -
=g > " (on = i) (%0 — )" (2.125)

n=1
Clearly from (2.122) and (2.124), the expectation of 3 is equal to 3.

2.3.5 Sequential estimation

Our discussion of the maximum likelihood solution for the parameters of a Gaus-
sian distribution provides a convenient opportunity to give a more general discussion
of the topic of sequential estimation for maximum likelihood. Sequential methods
allow data points to be processed one at a time and then discarded and are important
for on-line applications, and also where large data sets are involved so that batch
processing of all data points at once is infeasible.

Consider the result (2.121) for the maximum likelihood estimator of the mean
v, Which we will denote by pgﬂ) when it is based on N observations. If we
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Figure 2.10 A schematic illustration of two correlated ran- 24
dom variables = and 6, together with the f .

regression function f(¢) given by the con-
ditional expectation [£[z|¢]. The Robbins-
Monro algorithm provides a general sequen-
tial procedure for finding the root #* of such
functions.

0
dissect out the contribution from the final data point x5, we obtain
(N) L\
N
Py = an
n=1
1 L Nl
= XN + N Xn
n=1
1 N -1 (N-1)
WS
N-n 1 N—1
= o G = ). (2.126)
This result has a nice interpretation, as follows. After observing N — 1 data points
we have estimated g by Mﬁ,_l)- We now observe data point x, and we obtain our
revised estimate ufm) by moving the old estimate a small amount, proportional to

1/N, in the direction of the ‘error signal’ (x — uﬁﬁ‘ l)). Note that, as N increases,

so the contribution from successive data points gets smaller.

The result (2.126) will clearly give the same answer as the batch result (2.121)
because the two formulae are equivalent. However, we will not always be able to de-
rive a sequential algorithm by this route, and so we seek a more general formulation
of sequential learning, which leads us to the Robbins-Monro algorithm. Consider a
pair of random variables # and = governed by a joint distribution p(z, #). The con-
gitional expectation of z given ¢ defines a deterministic function f(¢) that is given

y

f(0) = E|z|0] = / zp(z|0) dz (2.127)

and is illustrated schematically in Figure 2.10. Functions defined in this way are
called regression functions.

Our goal is to find the root 6* at which f(6*) = 0. If we had a large data set
of observations of z and 6, then we could model the regression function directly and
then obtain an estimate of its root. Suppose, however, that we observe values of
Z one at a time and we wish to find a corresponding sequential estimation scheme
for 6*. The following general procedure for solving such problems was given by
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Robbins and Monro (1951). We shall assume that the conditional variance of z is
finite so that

E[(z—f)*|6] <o (2.128)
and we shall also, without loss of generality, consider the case where f(6) > 0 for
0 > 0* and f(0) < 0 for @ < 0*, as is the case in Figure 2.10. The Robbins-Monro
procedure then defines a sequence of successive estimates of the root #* given by

PN — p(N-1) + (JJN_lz(B(Nil)) (2.129)

where z(9N)) is an observed value of z when @ takes the value 0). The coefficients
{an} represent a sequence of positive numbers that satisfy the conditions

lim ay = 0 (2.130)
ZU,N = oo (2.131)
N=1
Y ay < . (2.132)
N=1

It can then be shown (Robbins and Monro, 1951; Fukunaga, 1990) that the sequence
of estimates given by (2.129) does indeed converge to the root with probability one.
Note that the first condition (2.130) ensures that the successive corrections decrease
in magnitude so that the process can converge to a limiting value. The second con-
dition (2.131) is required to ensure that the algorithm does not converge short of the
root, and the third condition (2.132) is needed to ensure that the accumulated noise
has finite variance and hence does not spoil convergence.

Now let us consider how a general maximum likelihood problem can be solved
sequentially using the Robbins-Monro algorithm. By definition, the maximum like-
lihood solution €y, is a stationary point of the log likelihood function and hence

satisfies
50 { Z]np X |?) }

n=1

= (. (2.133)
9:\1],

Exchanging the derivative and the summation, and taking the limit NV — oo we have

N

o 0
: E f 2.134
A;Lnlo Inp(x,|0) = L}@ In p(z| )] ( )

;1
and so we see that finding the maximum likelihood solution corresponds to find-
ing the root of a regression function. We can therefore apply the Robbins-Monro
procedure, which now takes the form

o) — giN=-1) 4 g Inp(zy |0 —1). (@.135)

ad
99N-1)

Figure 2.11
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In the case of a Gaussian distribution, with 0 24
corresponding to the mean u, the regression
function illustrated in Figure 2.10 takes the form p(z| )
of a straight line, as shown in red. In this
case, the random variable z corresponds to the
derivative of the log likelihood function and is

given by (z — yar)/o?, and its expectation that HML

defines the regression function is a straight line

given by (i — ur,) /o, The root of the regres- o
sion function corresponds to the maximum like- Iz

lihood estimator iy,

As a specific example, we consider once again the sequential estimation of the
mean of a Gaussian distribution, in which case the parameter V) is the estimate

;:.(M,? of the mean of the Gaussian, and the random variable z is given by

P
&

1

f)lfl\ = In p(a|pmy, 0*) = F(:}: — pML). (2.136)
Thus the distribution of z is Gaussian with mean p — ey, as illustrated in Fig-
ure 2.11. Substituting (2.136) into (2.135), we obtain the univariate form of (2.126),
provided we choose the coefficients ay to have the form ay = o?/N. Note that
although we have focussed on the case of a single variable, the same technique,
together with the same restrictions (2.130)—(2.132) on the coefficients ap, apply
equally to the multivariate case (Blum, 1965).

2.3.6 Bayesian inference for the Gaussian

The maximum likelihood framework gave point estimates for the parameters g
and 3. Now we develop a Bayesian treatment by introducing prior distributions
over these parameters. Let us begin with a simple example in which we consider a
single Gaussian random variable x. We shall suppose that the variance o2 is known,
and we consider the task of inferring the mean ;. given a set of N observations
X = {xy,...,xn}. The likelihood function, that is the probability of the observed
data given f, viewed as a function of i, is given by

N
1
p(X|p) = H p(zp|p) = m exp {—Ep Z(ﬁ‘:ﬂ — ;.'.)2} . (2.137)

n=1 n=1

Again we emphasize that the likelihood function p(X|z) is not a probability distri-
bution over 4 and is not normalized.

We see that the likelihood function takes the form of the exponential of a quad-
ratic form in p. Thus if we choose a prior p(u) given by a Gaussian, it will be a
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Exercise 2.38

conjugate distribution for this likelihood function because the corresponding poste-
rior will be a product of two exponentials of quadratic functions of . and hence will
also be Gaussian. We therefore take our prior distribution to be

p() = N (plpo, o3) (2.138)
and the posterior distribution is given by
p(p|X) o p(Xp)p(p)- (2.139)

Simple manipulation involving completing the square in the exponent shows that the
posterior distribution is given by

p(p|X) =N (;1.|;:.N,va) (2.140)
where
2 f\fﬁé

! : S ‘ 5 HMT, 2.141
HN Nﬁé+gzuu+ A,géJr_gz!fI\H ( )

1 1 N
L e 2.142
oy ol i o? ( )

in which g, is the maximum likelihood solution for ji given by the sample mean

N

1
HML = N Z::&,,,. (2.143)

n=1

It is worth spending a moment studying the form of the posterior mean and
variance. First of all, we note that the mean of the posterior distribution given by
(2.141) is a compromise between the prior mean /i and the maximum likelihood
solution piyr,. If the number of observed data points N = 0, then (2.141) reduces
to the prior mean as expected. For N — oo, the posterior mean is given by the
maximum likelihood solution. Similarly, consider the result (2.142) for the variance
of the posterior distribution. We see that this is most naturally expressed in terms
of the inverse variance, which is called the precision. Furthermore, the precisions
are additive, so that the precision of the posterior is given by the precision of the
prior plus one contribution of the data precision from each of the observed data
points. As we increase the number of observed data points, the precision steadily
increases, corresponding to a posterior distribution with steadily decreasing variance.
With no observed data points, we have the prior variance, whereas if the number of
data points N — oo, the variance Jf\, goes (o zero and the posterior distribution
becomes infinitely peaked around the maximum likelihood solution. We therefore
see that the maximum likelihood result of a point estimate for £ given by (2.143) is
recovered precisely from the Bayesian formalism in the limit of an infinite number
of observations. Note also that for finite N, if we take the limit (73 — oo in which the
prior has infinite variance then the posterior mean (2.141) reduces to the maximum
likelihood result, while from (2.142) the posterior variance is given by o3, = a*/N.

Figure 2.12

Exercise 2.40

Section 2.3.5
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lllustration of Bayesian inference for
the mean p of a Gaussian distri-
bution, in which the variance is as-
sumed to be known. The curves
show the prior distribution over p
(the curve labelled N = 0), which
in this case is itself Gaussian, along
with the posterior distribution given
by (2.140) for increasing numbers N
of data points. The data points are
generated from a Gaussian of mean
0.8 and variance 0.1, and the prior is
chosen to have mean 0. In both the
prior and the likelihood function, the ¥,
variance is set to the true value.

We illustrate our analysis of Bayesian inference for the mean of a Gaussian
distribution in Figure 2.12. The generalization of this result to the case of a D-
dimensional Gaussian random variable x with known covariance and unknown mean
is straightforward.

We have already seen how the maximum likelihood expression for the mean of
a Gaussian can be re-cast as a sequential update formula in which the mean after
observing N data points was expressed in terms of the mean after observing N — 1
data points together with the contribution from data point x . In fact, the Bayesian
paradigm leads very naturally to a sequential view of the inference problem. To see
this in the context of the inference of the mean of a Gaussian, we write the posterior
distribution with the contribution from the final data point x y separated out so that

N-—1
p(ulD) o [p(p) [T p(xnlee) | p(xnlpe)- (2.144)

n=1

The term in square brackets is (up to a normalization coefficient) just the posterior
distribution after observing N — 1 data points. We see that this can be viewed as
a prior distribution, which is combined using Bayes’ theorem with the likelihood
function associated with data point x, to arrive at the posterior distribution after
observing N data points. This sequential view of Bayesian inference is very general
and applies to any problem in which the observed data are assumed to be independent
and identically distributed.

So far, we have assumed that the variance of the Gaussian distribution over the
data is known and our goal is to infer the mean. Now let us suppose that the mean
is known and we wish to infer the variance. Again, our calculations will be greatly
simplified if we choose a conjugate form for the prior distribution. It turns out to be
most convenient to work with the precision A = 1/0?. The likelihood function for A
takes the form

N N
9 A .
p(X|X) = HN(CEN‘,!L, A™H o AN 2 exp {§ E (zn — ,u)z} : (2.145)

s =k
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Figure 2.13  Plot of the gamma distribution Gam(\|a, b) defined by (2.146) for various values of the parameters

a and b.

Exercise 2.41

Exercise 2.42

The corresponding conjugate prior should therefore be proportional to the product
of a power of A and the exponential of a linear function of A. This corresponds to
the gamma distribution which is defined by

1
I'(a)

Gam(AM|a,b) = BN exp(—bA). (2.146)

Here I'(a) is the gamma function that is defined by (1.141) and that ensures that
(2.146) is correctly normalized. The gamma distribution has a finite integral if @ > 0,
and the distribution itself is finite if @ = 1. It is plotted, for various values of @ and
b, in Figure 2.13. The mean and variance of the gamma distribution are given by
a
E[N = 3 (2.147)
)
a
ar[A] = —. 2.148)
var[\] 7 (
Consider a prior distribution Gam(A|ag, by). If we multiply by the likelihood
function (2.145), then we obtain a posterior distribution

N
. A .
P(AX) oc A%~ IAN/2 oxpy {—bn)\ = ;(r ~ ,L)ﬁ} (2.149)
which we recognize as a gamma distribution of the form Gam(\|ay, by ) where
N
ay = ag-+ ? (2]50)
i N
by = bot; Zl(a:n — ) =bo+ ot (2.151)

where o3y is the maximum likelihood estimator of the variance. Note that in (2.149)
there is no need to keep track of the normalization constants in the prior and the
likelihood function because, if required, the correct coefficient can be found at the
end using the normalized form (2.146) for the gamma distribution.

Section 2.2
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From (2.150), we see that the effect of observing N data points is to increase
the value of the coefficient @ by N/2. Thus we can interpret the parameter a in
the prior in terms of 2a, ‘effective’ prior observations. Similarly, from (2.151) we
see that the IV data points contribute NoZ;, /2 to the parameter b, where o3 is
the variance, and so we can interpret the parameter b, in the prior as arising from
the 2a, ‘effective’ prior observations having variance 2by/(2ag) = bo/ag. Recall
that we made an analogous interpretation for the Dirichlet prior. These distributions
are examples of the exponential family, and we shall see that the interpretation of
a conjugate prior in terms of effective fictitious data points is a general one for the
exponential family of distributions.

Instead of working with the precision, we can consider the variance itself. The
conjugate prior in this case is called the inverse gamma distribution, although we
shall not discuss this further because we will find it more convenient to work with
the precision.

Now suppose that both the mean and the precision are unknown. To find a
conjugate prior, we consider the dependence of the likelihood function on poand A

N A \/2 A
p(X[pN) =] (;) exp {—E(mn = H)z}

n=1

” A N N P )
o A T exp — exp /\}LZ:!,‘,,‘—EZ.’I?“ . (2.152)

n=1 n=1

We now wish to identify a prior distribution p(ss, ) that has the same functional
dependence on 4 and A as the likelihood function and that should therefore take the
form

Api?

7
pit, A) o {j)\l/z(‘?{]) (—!T):{ exp {cAp — d\}

_ 2
= exp {'k;)\(,u - (:/,-’J’}Z} N2 exp {— (n’. - ;D’> )\} (2.153)

where ¢, d, and (3 are constants. Since we can always write p(1, A) = p(p|\)p(\),
we can find p(u|A) and p(A) by inspection. In particular, we see that p(u|A) is a
Gaussian whose precision is a linear function of A\ and that p(A) is a gamma distri-
bution, so that the normalized prior takes the form

P, A) = N (plpo, (BX) ") Gam(a, b) (2.154)

where we have defined new constants given by g = ¢/3, a = 1+ 3/2, b =
d—c?/23. The distribution (2. 154) is called the normal-gamma or Gaussian-gamma
distribution and is plotted in Figure 2.14. Note that this is not simply the product
of an independent Gaussian prior over ; and a gamma prior over A, because the
precision of 4 is a linear function of A. Even if we chose a prior in which g and A
were independent, the posterior distribution would exhibit a coupling between the
precision of y and the value of .
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Figure 2.14 Contour plot of the normal-gamma 5

Exercise 2.45

Section 2.3.6

Exercise 2.46

distribution (2.154) for parameter
values o = 0, 3 = 2, a = 5 and
b= 6.

0

In the case of the multivariate Gaussian distribution N (x|, A™") for a D-
dimensional variable x, the conjugate prior distribution for the mean g, assuming
the precision is known, is again a Gaussian. For known mean and unknown precision
matrix A, the conjugate prior is the Wishart distribution given by

. 1
W(A|W, ) = B|A|@ P12 exp (—ETr(W_]A)) (2.155)

where v is called the number of degrees of freedom of the distribution, W is a 1D x D
scale matrix, and Tr(-) denotes the trace. The normalization constant 3 is given by

D .
];(W,V) _ 4w|—://2 21/,’)/27TU(U 1)/4 r[i]" (%ﬂ_f) . (2.156)

Again, it is also possible to define a conjugate prior over the covariance matrix itself,
rather than over the precision matrix, which leads to the inverse Wishart distribu-
tion, although we shall not discuss this further. If both the mean and the precision
are unknown, then, following a similar line of reasoning to the univariate case, the
conjugate prior is given by

P4 Alpag, 5, W, 1) = N (p|pg, (BA) ) W(AIW ) (2.157)
which is known as the normal-Wishart or Gaussian-Wishart distribution.

2.3.7 Student’s t-distribution

We have seen that the conjugate prior for the precision of a Gaussian is given
by a gamma distribution. If we have a univariate Gaussian A/(z|p, 77") together
with a Gamma prior Gam(7|a, b) and we integrate out the precision, we obtain the
marginal distribution of x in the form
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Figure 2.15 Plot of Student's t-distribution (2.159) ‘

Exercise 2.47

Exercise 12.24

for . = 0 and A = 1 for various values s
of ». The limit v — oo corresponds SO
to a Gaussian distribution with mean 0.4}
w1 and precision .

037}

02r

0.1

plx|p,a,b) = / N (z|p, 7~ ") Gam(7|a, b) dr (2.158)

40

B /% bu‘{,'(—b'r)Trmfl ( TN\ 1/2 . ,
Jo ['a) 27]') il {‘5('! — } a7

_ be (1 /2 ; (& — p)? P b i
T(a) \2n )+ g I'(a+1/2)

where we have made the change of variable z = 7[b + (2 — 11)2/2]. By convention
we define new parameters given by v = 2a and A = a/b, in terms of which the
distribution p(x|s, a, b) takes the form

TN 11(12/2-1-1/2) pY 1/2 Nfaride )2 —v/2-1/2
Sl ) = = [‘*LH&J (2.159)

which is known as Student’s t-distribution. The parameter ) is sometimes called the
precision of the t-distribution, even though it is not in general equal to the inverse
of the variance. The parameter v is called the degrees of freedom, and its effect is
illustrated in Figure 2.15. For the particular case of v = 1, the t-distribution reduces
to the Cauchy distribution, while in the limit  — oo the t-distribution St(zz|p, A, /)
becomes a Gaussian A (x|, A~') with mean g and precision \. ’

: From (2.158), we see that Student’s t-distribution is obtained by adding up an
11:1ﬁnite number of Gaussian distributions having the same mean but different preci-
sions. This can be interpreted as an infinite mixture of Gaussians (Gaussian mixtures
will be discussed in detail in Section 2.3.9. The result is a distribution that in gen-
eral has longer ‘tails’ than a Gaussian, as was seen in Figure 2.15. This gives the t-
distribution an important property called robustness, which means that it is much less
sensitive than the Gaussian to the presence of a few data points which are outliers.
The robustness of the t-distribution is illustrated in Figure 2.16, which compares the
maximum likelihood solutions for a Gaussian and a t-distribution. Note that the max-
imum likelihood solution for the t-distribution can be found using the expectation-
maximization (EM) algorithm. Here we see that the effect of a small number of
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0.5

Figure 2.16 lllustration of the robustness of Student’s t-distribution compared to a Gaussian. (a) Histogram
distribution of 30 data points drawn from a Gaussian distribution, together with the maximum likelihood fit ob-
tained from a t-distribution (red curve) and a Gaussian (green curve, largely hidden by the red curve). Because
the t-distribution contains the Gaussian as a special case it gives almost the same solution as the Gaussian.
(b) The same data set but with three additional outlying data points showing how the Gaussian (green curve) is
strongly distorted by the outliers, whereas the t-distribution (red curve) is relatively unaffected.

Exercise 2.48

outliers is much less significant for the t-distribution than for the Gaussian. Outliers
can arise in practical applications either because the process that generates the data
corresponds to a distribution having a heavy tail or simply through mislabelled data.
Robustness is also an important property for regression problems. Unsurprisingly,
the least squares approach to regression does not exhibit robustness, because it cor-
responds to maximum likelihood under a (conditional) Gaussian distribution. By
basing a regression model on a heavy-tailed distribution such as a t-distribution, we
obtain a more robust model.

If we go back to (2.158) and substitute the alternative parameters v = 2a, A =
a/b, and 1 = 7b/a, we see that the t-distribution can be written in the form

St(x|p, A, v) = / N (|, (nA) 1) Gam(nlr/2,1/2) di. (2.160)
<0

We can then generalize this to a multivariate Gaussian A/ (x|p, A) to obtain the cor-
responding multivariate Student’s t-distribution in the form

St(x|p, A, v) = / N (x|, (nA)~ 1) Gam(n|v/2,v/2) dn. (2.161)
J0 e

Using the same technique as for the univariate case, we can evaluate this integral to
give

{ Exercise 2.49
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St(x|@, A, v) = (2.162)

174

[(D/2+v/2) |A|'/? [ A_T—i)/?—vﬂ
T'(v/2)  (wv)P/2

where D is the dimensionality of x, and A? is the squared Mahalanobis distance
defined by
A? = (x— w)"A(x — ). (2.163)

This is the multivariate form of Student’s t-distribution and satisfies the following
properties

Elx] = p. it w1 (2.164)
covlx] = G i 2)A_], it v>2 (2.165)
mode[x|] = p (2.166)

with corresponding results for the univariate case.

2.3.8 Periodic variables

Although Gaussian distributions are of great practical significance, both in their
own right and as building blocks for more complex probabilistic models, there are
situations in which they are inappropriate as density models for continuous vari-
ables. One important case, which arises in practical applications, is that of periodic
variables.

An example of a periodic variable would be the wind direction at a particular
geographical location. We might, for instance, measure values of wind direction on a
number of days and wish to summarize this using a parametric distribution. Another
example is calendar time, where we may be interested in modelling quantities that
are believed to be periodic over 24 hours or over an annual cycle. Such quantities
can conveniently be represented using an angular (polar) coordinate 0 < @ < 27.

We might be tempted to treat periodic variables by choosing some direction
as the origin and then applying a conventional distribution such as the Gaussian.
Such an approach, however, would give results that were strongly dependent on the
arbitrary choice of origin. Suppose, for instance, that we have two observations at
fy, = 1° and 0, = 359°, and we model them using a standard univariate Gaussian
distribution. If we choose the origin at 0°, then the sample mean of this data set
will be 180° with standard deviation 179°, whereas if we choose the origin at 180°,
then the mean will be 0° and the standard deviation will be 1°. We clearly need to
develop a special approach for the treatment of periodic variables.

Let us consider the problem of evaluating the mean of a set of observations
D = {6y,...,0n} of a periodic variable. From now on, we shall assume that ¢ is
measured in radians. We have already seen that the simple average (6, +- - -+6y)/N
will be strongly coordinate dependent. To find an invariant measure of the mean, we
note that the observations can be viewed as points on the unit circle and can therefore
be described instead by two-dimensional unit vectors xi, ..., xy where ||x,| = 1
forn = 1,..., N, as illustrated in Figure 2.17. We can average the vectors {x, }
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Figure 2.17

Illustration of the representation of val-

ues #, of a periodic variable as two- x4
dimensional vectors x,, living on the unit

circle. Also shown is the average x of

those vectors.

instead to give

=7 Xn (2.167)

and then find the corresponding angle @ of this average. Clearly, this definition will
ensure that the location of the mean is independent of the origin of the angular coor-
dinate. Note that X will typically lie inside the unit circle. The Cartesian coordinates
of the observations are given by x,, = (cos@,,,sin @, ), and we can write the Carte-
sian coordinates of the sample mean in the form X = (7 cos ), 7 sin #/). Substituting
into (2.167) and equating the 2 and x5 components then gives
1 N
Feosl = 5 > cos by, Tsing = Z sin@,,. (2.168)

n=1 n=1

Taking the ratio, and using the identity tan = sin§/ cos 6, we can solve for 0 to

give
7= tan—! 2 sinbn . (2.169)
>, cosbh,

Shortly, we shall see how this result arises naturally as the maximum likelihood
estimator for an appropriately defined distribution over a periodic variable.

We now consider a periodic generalization of the Gaussian called the von Mises
distribution. Here we shall limit our attention to univariate distributions, although
periodic distributions can also be found over hyperspheres of arbitrary dimension.
For an extensive discussion of periodic distributions, see Mardia and Jupp (2000).

By convention, we will consider distributions p(#) that have period 2. Any
probability density p(f) defined over & must not only be nonnegative and integrate
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Figure 2,18 The von Mises distribution can be derived by considering T

a two-dimensional Gaussian of the form (2.173), whose
density contours are shown in blue and conditioning on
the unit circle shown in red.

r=1

to one, but it must also be periodic. Thus p(#) must satisfy the three conditions

p(0) = 0 (2.170)
27
/ p(0)do = 1 2.171)
Jo
p(0+2m) = p(0). (2.172)

From (2.172), it follows that p(6 + M27) = p(@) for any integer M.

We can easily obtain a Gaussian-like distribution that satisfies these three prop-
erties as follows. Consider a Gaussian distribution over two variables x = (x1, x5)
having mean y¢ = (111, ¢12) and a covariance matrix ¥ = %I where I is the 2 x 2
identity matrix, so that

21— 1)2 4 (2o — 110)2
play, @) = : (!xp{('” p)” + (@2 = pio) } (2.173)

2mo? 202

The contours of constant p(x) are circles, as illustrated in Figure 2.18. Now suppose
we consider the value of this distribution along a circle of fixed radius. Then by con-
struction this distribution will be periodic, although it will not be normalized. We can
determine the form of this distribution by transforming from Cartesian coordinates
(1, x2) to polar coordinates (r, #) so that
ry =rcosf, ro = rsinf. (2.174)
We also map the mean g into polar coordinates by writing
1 = Ty COS8 6'[‘], Ho = To sin 80. (2 175)

Next we substitute these transformations into the two-dimensional Gaussian distribu-
tion (2.173), and then condition on the unit circle » = 1, noting that we are interested
only in the dependence on . Focussing on the exponent in the Gaussian distribution
we have

1 y 0
) {(r cos — rocosfy)? + (rsinf — rosin 90)2}

1 _
o {l + T'é — 2rg cosf cos by — 21y sin A sin 90}

= g cos(8 — 6o) + const (2.176)
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Figure 2.19 The von Mises distribution plotted for two different parameter values, shown as a Cartesian plot
on the left and as the corresponding polar plot on the right.

Exercise 2.51

Exercise 2.52

where ‘const’ denotes terms independent of ¢, and we have made use of the following
trigonometrical identities

cos® A+sin?A = 1 (2.177)
cos Acos B +sinAsin B = cos(A— B). (2.178)

If we now define m = ’."()/(Tz, we obtain our final expression for the distribution of
p(6) along the unit circle r = 1 in the form

|

p{()‘ﬁ(],’i?i‘») = m
which is called the von Mises distribution, or the circular normal. Here the param-
eter Ay corresponds to the mean of the distribution, while 1, which is known as
the concentration parameter, is analogous to the inverse variance (precision) for the
Gaussian. The normalization coefficient in (2.179) is expressed in terms of I(m),
which is the zeroth-order Bessel function of the first kind (Abramowitz and Stegun,
1965) and is defined by

exp {mcos(6 — 0y)} (2.179)

1

27
Iy(m) = 5 / exp {mcos@} do. (2.180)
Jo

For large m, the distribution becomes approximately Gaussian. The von Mises dis-
tribution is plotted in Figure 2.19, and the function o(m) is plotted in Figure 2.20.

Now consider the maximum likelihood estimators for the parameters 0, and m
for the von Mises distribution. The log likelihood function is given by
. N
In p(D|6y, m) = —N In(27) — N In Iy(m) +m Z cos(@, — 6o). (2.181)

n=1
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Figure 2.20 Plot of the Bessel function I,(m) defined by (2.180), together with the function A(m) defined by

(2.186).

Eencise 2.53

Setting the derivative with respect to ¢y equal to zero gives

N

> sin(0, — 6o) = 0. (2.182)

n=1

To solve for 0, we make use of the trigonometric identity

sin(A — B) = cos Bsin A — cos Asin B (2.183)

sin 0,
EML _ o~ 2 S0 O :

0 >, costy, (@60
which we recognize as the result (2.169) obtained earlier for the mean of the obser-

from which we obtain

“vations viewed in a two-dimensional Cartesian space.

Similarly, maximizing (2.181) with respect to m, and making use of I}(m) =
I, (m) (Abramowitz and Stegun, 1965), we have

N
1
A(m) = N Z cos(0,, — O3 (2.185)

n=1

where we have substituted for the maximum likelihood solution for )" (recalling
that we are performing a joint optimization over  and m), and we have defined

_ I (m)
Io(m)

The function A(m) is plotted in Figure 2.20. Making use of the trigonometric iden-
tity (2.178), we can write (2.185) in the form

N N
il il;
A(my) = (N E COS@”) cosﬁ’}}fIL — (ﬁ E sin{?n) sinG%\,’IL. (2.187)

n=1 ikl

A(m) (2.186)
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Figure 2.21 Plots of the ‘old faith- Figure 2.22  Example of a Gaussian mixture distribution p(z;)

ful’ data in which the blue curves LY L { in one dimension showing three Gaussians
show contours of constant proba- (each scaled by a coefficient) in blue and
bility density. ~ On the left is a their sum in red.
single Gaussian distribution which 80 80
has been fitted to the data us-
ing maximum likelihood. Note that '
this distribution fails to capture the 60 60
two clumps in the data and indeed
places much of its probability mass >
in the central region between the b & {
clumps where the data are relatively 40 40
sparse. On the right the distribution I 23 4 5 6 1 2 3 4 5 6 the eruption in minutes (horizontal axis) and the time in minutes to the next erup-
is given by a linear combination of tion (vertical axis). We see that the data set forms two dominant clumps, and that
two Gausslans which has been fitted 1 a simple Gaussian distribution is unable to capture this s asca
o the data by maximum likelihood ol ORI apture, this. sishetiteseiitcreass dingas
using techniques discussed Chap- superposition of two Gaussians gives a better characterization of the data set.
ter 9, and which gives a better rep- Such superpositions, formed by taking linear combinations of more basic dis-
resentation of the data. ‘ tributions such as Gaussians, can be formulated as probabilistic models known as
mixture distributions (McLachlan and Basford, 1988; McLachlan and Peel, 2000).
. . _ ) o { In Figure 2.22 we see that a linear combination of Gaussians can give rise to very
_The nght—handl side of (2.187) is easily evaluated, and the function A(m) can be complex densities. By using a sufficient number of Gaussians, and by adjusting their
inverted l\]umencally‘.‘ _ . ) ) i means and covariances as well as the coefficients in the linear combination, almost
F-or cor'I]ple.tenf:.ss,_wc_ mention brleﬂ)_/ some alternatlvcltcchmqucs 1.0r the con- any continuous density can be approximated to arbitrary accuracy.
struction of periodic distributions. The simplest approach is to use a histogram of We therefore consider a superposition of & Gaussian densities of the form

observations in which the angular coordinate is divided into fixed bins. This has the

virtue of simplicity and flexibility but also suffers from significant limitations, as we ‘ K
shall see when we discuss histogram methods in more detail in Section 2.5. Another p(x) = Z TN (x| ey, i) (2.188)
approach starts, like the von Mises distribution, from a Gaussian distribution over a k=1

Euclidean space but now marginalizes onto the unit circle rather than conditioning
Mardia and Jupp, 2000). However, this leads to more complex forms of distribution X ) ) )
( a pp ) P called a component of the mixture and has its own mean g, and covariance X

i nolbe qISCUSSCd furtfic: Ema]]y > a0y v‘ahd‘ dl$lr1b.u[10n over tk_le real axis Contour and surface plots for a Gaussian mixture having 3 components are shown in
(such as a Gaussian) can be turned into a periodic distribution by mapping succes- Figure 2.23

sive intervals of width 27 onto the periodic variable (0, 27), which corresponds to s e
‘wrapping’ the real axis around unit circle. Again, the resulting distribution is more
complex to handle than the von Mises distribution.

One limitation of the von Mises distribution is that it is unimodal. By forming
mixtures of von Mises distributions, we obtain a flexible framework for modelling ' B i0n 0.3.3
periodic variables that can handle multimodality. For an example of a machine learn-
ing application that makes use of von Mises distributions, see Lawrence et al. (2002),
and for extensions to modelling conditional densities for regression problems, see
Bishop and Nabney (1996).

which is called a mixture of Gaussians. Each Gaussian density N (x|, Zx) is

In this section we shall consider Gaussian components to illustrate the frame-
work of mixture models. More generally, mixture models can comprise linear com-
binations of other distributions. For instance, in Section 9.3.3 we shall consider
mixtures of Bernoulli distributions as an example of a mixture model for discrete
variables.

The parameters 7, in (2.188) are called mixing coefficients. If we integrate both
sides of (2.188) with respect to x, and note that both p(x) and the individual Gaussian
components are normalized, we obtain

2.3.9 Mixtures of Gaussians

While the Gaussian distribution has some important analytical properties, it suf-
fers from significant limitations when it comes to modelling real data sets. Consider
the example shown in Figure 2.21. This is known as the ‘Old Faithful’ data set,
and comprises 272 measurements of the eruption of the Old Faithful geyser at Yel-

Appendix A lowstone National Park in the USA. Each measurement comprises the duration of

S me=1. (2.189)

Also, the requirement that p(x) > 0, together with A (x|p;, 1) > 0, implies
7 = 0 for all k. Combining this with the condition (2.189) we obtain

0 mp < 1. (2.190)
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1
(b)
0.5
0
1 0 0.5 I

lllustration of a mixture of 3 Gaussians in a two-dimensional space. (a) Contours of constant
density for each of the mixture components, in which the 3 components are denoted red, blue and green, and

the values of the mixing coefficients are shown below each component. (b) Contours of the marginal probability
density p(x) of the mixture distribution. (c) A surface plot of the distribution p(x).

We therefore see that the mixing coefficients satisly the requirements to be probabil-
ities.
From the sum and product rules, the marginal density is given by

y
p(x) = Zg;(ﬁ:)p(x\k) (2.191)
k=1

which is equivalent to (2.188) in which we can view 7, = p(k) as the prior prob-
ability of picking the £ component, and the density AV (x|p,,, £5) = p(x|k) as
the probability of x conditioned on k. As we shall see in later chapters, an impor-
tant role is played by the posterior probabilities p(k|x), which are also known as
responsibilities. From Bayes’ theorem these are given by

ve(x) = plk|x)
p(k)p(x|k)
> p()p(x[l)
X L2
> mN (x|, 30)

We shall discuss the probabilistic interpretation of the mixture distribution in greater
detail in Chapter 9.

The form of the Gaussian mixture distribution is governed by the parameters ,
w and X, where we have used the notation w = {my,..., T}, o = {fy, .-, Bg }
and ¥ = {34,... ¥} One way to set the values of these parameters is to use
maximum likelihood. From (2.188) the log of the likelihood function is given by

N R e
Inp(X|m, p, 2) = Zln{z ﬂkN(xnIp,k,Ek)} (2.193)
k=1

n=1

2.4.
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where X = {x;....,xx}. We immediately see that the situation is now much
more complex than with a single Gaussian, due to the presence of the summation
over k inside the logarithm. As a result, the maximum likelihood solution for the
parameters no longer has a closed-form analytical solution. One approach to maxi-
mizing the likelihood function is to use iterative numerical optimization techniques
(Fletcher, 1987; Nocedal and Wright, 1999; Bishop and Nabney, 2008). Alterna-
tively we can employ a powerful framework called expectation maximization, which
will be discussed at length in Chapter 9.

The Exponential Family

The probability distributions that we have studied so far in this chapter (with the
exception of the Gaussian mixture) are specific examples of a broad class of distri-
butions called the exponential family (Duda and Hart, 1973; Bernardo and Smith,
1994). Members of the exponential family have many important properties in com-
mon, and it is illuminating to discuss these properties in some generality.

The exponential family of distributions over x, given parameters 1, is defined to
be the set of distributions of the form

p(xim) = h(x)g(n) exp {n"u(x)} (2.194)

where x may be scalar or vector, and may be discrete or continuous. Here 7 are
called the natural parameters of the distribution, and u(x) is some function of x.
The function g(n) can be interpreted as the coefficient that ensures that the distribu-
tion is normalized and therefore satisfies

g(n) / h(x) exp {n"‘u(x)} dx =1 (2.195)

where the integration is replaced by summation if x is a discrete variable.

We begin by taking some examples of the distributions introduced earlier in
the chapter and showing that they are indeed members of the exponential family.
Consider first the Bernoulli distribution

plx|p) = Bern(x|p) = p*(1 — p)' ", (2.196)
Expressing the right-hand side as the exponential of the logarithm, we have
plxzlp) = exp{ezlnpu+ (1 —a)In(l —p)}

= (1 —p)exp {]1‘1 (l '”'} ) :}:} ! (2.197)
— M

Comparison with (2.194) allows us to identify

n=In (__L"‘ ) (2.198)
L
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which we can solve for u to give = o(n), where
1
T+ exp(—1)

is called the logistic sigmoid function. Thus we can write the Bernoulli distribution
using the standard representation (2.194) in the form

p(x|n) = a(—n) exp(nx) (2.200)

a(n) = (2.199)

where we have used 1 — o(n) = o(—n), which is easily proved from (2.199). Com-
parison with (2.194) shows that

w(x) = = (2.201)
h(z) = 1 (2.202)
gn) = oa(-n). (2.203)
Next consider the multinomial distribution that, for a single observation x, takes
the form
M
p(x|p) = H f.* = exp {Z T In ,u,k} (2.204)
=1 k=1
where x = (z1,...,xn)". Again, we can write this in the standard representation

(2.194) so that B

p(x|n) = exp(nTx) (2.205)
where 15, = In ji;., and we have defined n = (1, ..., na)". Again, comparing with
(2.194) we have

ux) = x (2.206)
hi(x) = 1 (2.207)
gln) = 1L (2.208)

Note that the parameters 7, are not independent because the parameters /¢, are sub-

ject to the constraint
M

Z e = 1 (2.209)

k=1
so that, given any M — 1 of the parameters j¢;, the value of the remaining parameter
is fixed. In some circumstances, it will be convenient to remove this constraint by
expressing the distribution in terms of only M — 1 parameters. This can be achieved
by using the relationship (2.209) to eliminate iy, by expressing it in terms of the
remaining {y, } where k = 1,..., M — 1, thereby leaving M — 1 parameters. Note
that these remaining parameters are still subject to the constraints

0<m<l, Y omsL (2210)
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Making use of the constraint (2.209), the multinomial distribution in this representa-
tion then becomes

M
oxXp {Z T In g }

k=1

M—1 M—1 M—1
- exp{z xR n g + (1— Z Tk) In (1+ Z,u,k)}
k=1

k=1 k=1

M—1 M—-1
. exp{z .‘Ekhl( L — ) +1n (1 - Z ;;k) } (2.211)
k=1 - Z, 1 M

We now identify
i
In|{ ———\)=m (2.212)
(1 B Z, Hj )

which we can solve for i, by first summing both sides over £ and then rearranging
and back-substituting to give

exp (1)
e = ) 2.213
He =1 + ZJ exp(n;) ( )

This is called the softmax function, or the normalized exponential. In this represen-
tation, the multinomial distribution therefore takes the form

M—1 !
p(x|n) = (J + Z exp(ng ) exp(n'x). (2.214)

k=1

This is the standard form of the exponential family, with parameter vector n =
(m,...,nar—1)7 in which

ulx) = x (2.215)
hix) = 1 (2.216)

M—1 -1
g(n) = (1+Zc~xp(m)) : (2.217)
k=1

Finally, let us consider the Gaussian distribution. For the univariate Gaussian,
we have

1 1 _
p(ﬂf“fng) = (27{(}2)1/2’0}(1){_@(1‘_#)2} (2218)
1 T i 1
Wexp{—wmz—o—ﬁm—ﬁuz} (2.219)
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Exercise 2.57

Exercise 2.58

which, after some simple rearrangement, can be cast in the standard exponential

family form (2.194) with

n = (_’i%;) (2.220)
u(z) = (;2) (2.221)
hx) = (2m)1/? (2.222)

) n2
gm) = (~2’rfz)']/zexp(£;z). (2.223)

2.4.1 Maximum likelihood and silfficient statistics

Let us now consider the problem of estimating the parameter vector 7 in the gen-
eral exponential family distribution (2.194) using the technique of maximum likeli-
hood. Taking the gradient of both sides of (2.195) with respect to 17, we have

V‘q(n)/-h.(x)()X]){nTu(x)} dx

+ g(n) / h(x) exp {n"'u(x)} u(x)dx = 0. (2.224)

Rearranging, and making use again of (2.195) then gives

—%Vg(n) =g(n) / h(x)exp {nr"u(x)} u(x) dx = E[u(x)] (2.225)
ag\n ;
where we have used (2.194). We therefore obtain the result

~Ving(n) = Elu(x)]. (2.226)

Note that the covariance of u(x) can be expressed in terms of the second derivatives
of g(n). and similarly for higher order moments. Thus, provided we can normalize a
distribution from the exponential family, we can always find its moments by simple
differentiation.

Now consider a set of independent identically distributed data denoted by X =

{x1,...,%,}, for which the likelihood function is given by
N N
p(X[n) = ( 11 h(xﬂ) g(m)" exp {nT > u(x.,-,,)} : (2.227)
n=1 n=1

Setting the gradient of In p(X|n) with respect to i to zero, we get the following
condition to be satisfied by the maximum likelihood estimator 1),

N
1
~Ving(my) = ATRATTE (2.228)

=i
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which can in principle be solved to obtain 1, . We see that the solution for the
maximum likelihood estimator depends on the data only through Y, u(x,,), which
is therefore called the sufficient statistic of the distribution (2.194). We do not need
to store the entire data set itself but only the value of the sufficient statistic. For
the Bernoulli distribution, for example, the function u(x) is given just by z and
so we need only keep the sum of the data points {x,,}, whereas for the Gaussian
u(x) = (x,2%)T, and so we should keep both the sum of {z,,} and the sum of {z2}.

If we consider the limit N — oo, then the right-hand side of (2.228) becomes
[E[u(x)], and so by comparing with (2.226) we see that in this limit v, Will equal
the true value 7.

In fact, this sufficiency property holds also for Bayesian inference, although
we shall defer discussion of this until Chapter 8 when we have equipped ourselves
with the tools of graphical models and can thereby gain a deeper insight into these
important concepts.

2.4.2 Conjugate priors

We have already encountered the concept of a conjugate prior several times, for
example in the context of the Bernoulli distribution (for which the conjugate prior
is the beta distribution) or the Gaussian (where the conjugate prior for the mean is
a Gaussian, and the conjugate prior for the precision is the Wishart distribution). In
general, for a given probability distribution p(x|n), we can seek a prior p(n) that is
conjugate to the likelihood function, so that the posterior distribution has the same
functional form as the prior. For any member of the exponential family (2.194), there
exists a conjugate prior that can be written in the form

p(nlx,v) = f(x.v)g(m)" exp {vnTx} (2.229)

where f(x, ) is a normalization coefficient, and g(n) is the same function as ap-
pears in (2.194). To see that this is indeed conjugate, let us multiply the prior (2.229)
by the likelihood function (2.227) to obtain the posterior distribution, up to a nor-
malization coefficient, in the form

N
p(n|X, x,v) o g(n)" Y exp {T]"' (Z u(x,) + z/x) } . (2.230)

n—1

This again takes the same functional form as the prior (2.229), confirming conjugacy.
Furthermore, we see that the parameter v can be interpreted as a effective number of
pseudo-observations in the prior, each of which has a value for the sufficient statistic
u(x) given by x.

2.4.3 Noninformative priors

In some applications of probabilistic inference, we may have prior knowledge
that can be conveniently expressed through the prior distribution. For example, if
the prior assigns zero probability to some value of variable, then the posterior dis-
tribution will necessarily also assign zero probability to that value, irrespective of
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any subsequent observations of data. In many cases, however, we may have little
idea of what form the distribution should take. We may then seek a form of prior
distribution, called a noninformative prior, which is intended to have as little influ-
ence on the posterior distribution as possible (Jeffries, 1946; Box and Tao, 1973;
Bernardo and Smith, 1994). This is sometimes referred (o as ‘letting the data speak
for themselves’.

If we have a distribution p(z|\) governed by a parameter A, we might be tempted
to propose a prior distribution p(A\) = const as a suitable prior. If A is a discrete
variable with K states, this simply amounts to setting the prior probability of each
state to 1/ K. In the case of continuous parameters, however, there are two potential
difficulties with this approach. The first is that, if the domain of A is unbounded,
this prior distribution cannot be correctly normalized because the integral over A
diverges. Such priors are called improper. In practice, improper priors can often
be used provided the corresponding posterior distribution is proper, i.e., that it can
be correctly normalized. For instance, if we put a uniform prior distribution over
the mean of a Gaussian, then the posterior distribution for the mean, once we have
observed at least one data point, will be proper.

A second difficulty arises from the transformation behaviour of a probability
density under a nonlinear change of variables, given by (1.27). If a function A())
is constant, and we change variables to A = 7n?, then ﬁ(n) = h(n?) will also be
constant. However, if we choose the density py () to be constant, then the density
of n will be given, from (1.27), by

Pn(n) = pA(A) %\I‘ = pA(n?)2n < (2.231)
and so the density over 7 will not be constant. This issue does not arise when we use
maximum likelihood, because the likelihood function p(x|\) is a simple function of
A and so we are free to use any convenient parameterization. If, however, we are to
choose a prior distribution that is constant, we must take care to use an appropriate
representation for the parameters.

Here we consider two simple examples of noninformative priors (Berger, 1985).
First of all, if a density takes the form

plx|p) = flz —p) (2.232)

then the parameter ;i is known as a location parameter. This family of densities
exhibits translation invariance because if we shift @ by a constant to give = = = + ¢,
then

p(@Ii) = /(@ - ) (2233)

where we have defined ;1 = p + ¢. Thus the density takes the same form in the
new variable as in the original one, and so the density is independent of the choice
of origin. We would like to choose a prior distribution that reflects this translation
invariance property, and so we choose a prior that assigns equal probability mass to

Exercise 2.59
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an interval A < o < B as to the shifted interval A — ¢ < u < B — ¢. This implies

B "B—c B
/ () dp = / plp) dp :/ pp—c)dp (2.234)

A JA—c A

and because this must hold for all choices of 4 and B, we have

p(p —c) = p(p) (2.235)

which implies that p(y) is constant. An example of a location parameter would be
the mean y of a Gaussian distribution. As we have seen, the conjugate prior distri-
bution for 4 in this case is a Gaussian p(u|po, o3) = N (|po, 02), and we obtain a
noninformative prior by taking the limit 07 — oo. Indeed, from (2.141) and (2.142)
we see that this gives a posterior distribution over ;1 in which the contributions from
the prior vanish.

As a second example, consider a density of the form

p(z|o) = é f (i) (2.236)

where o > 0. Note that this will be a normalized density provided f(z) is correctly
normalized. The parameter o is known as a scale parameter, and the density exhibits
scale invariance because if we scale x by a constant to give 7 = ¢z, then

p(EI5) = =/ (é) (2.237)
o \o
where we have defined & = co. This transformation corresponds to a change of
scale, for example from meters to kilometers if x is a length, and we would like
to choose a prior distribution that reflects this scale invariance. If we consider an
interval A < o < B, and a scaled interval A/c < o < B3 /e, then the prior should
assign equal probability mass to these two intervals. Thus we have

B B/e B 1 1
f plo)do = f plo)de = / P (—J) —do (2.238)
A Afe A c C

and because this must hold for choices of A and B, we have

1\ 1
plo)=p (;a) = (2.239)

C

and hence p() o 1/0. Note that again this is an improper prior because the integral
of the distribution over 0 < o < oo is divergent. It is sometimes also convenient
to think of the prior distribution for a scale parameter in terms of the density of the
log of the parameter. Using the transformation rule (1.27) for densities we see that
p(In o) = const. Thus, for this prior there is the same probability mass in the range
1 € ¢ < 10 as in the range 10 < ¢ < 100 and in 100 < ¢ < 1000.
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2.5.

An example of a scale parameter would be the standard deviation o of a Gaussian
distribution, after we have taken account of the location parameter /z, because

N(zlp,0%) < o™ exp {=(T/0)*} (2.240)

where = = = — pi. As discussed earlier, it is often more convenient to work in terms
of the precision A = 1/¢ rather than o itself. Using the transformation rule for
densities, we see that a distribution p(o) o 1/0 corresponds to a distribution over
of the form p(A) oc 1/A. We have seen that the conjugate prior for A was the gamma
distribution Gam(Al|ag, by) given by (2.146). The noninformative prior is obtained
as the special case ag = by = 0. Again, if we examine the results (2.150) and (2.151)
for the posterior distribution of A, we see that for ay = by = 0, the posterior depends
only on terms arising from the data and not from the prior.

Nonparametric Methods

Throughout this chapter, we have focussed on the use of probability distributions
having specific functional forms governed by a small number of parameters whose
values are to be determined from a data set. This is called the parametric approach
to density modelling. An important limitation of this approach is that the chosen
density might be a poor model of the distribution that generates the data, which can
result in poor predictive performance. For instance, if the process that generates the
data is multimodal, then this aspect of the distribution can never be captured by a
Gaussian, which is necessarily unimodal.

In this final section, we consider some nonparametric approaches to density es-
timation that make few assumptions about the form of the distribution. Here we shall
focus mainly on simple frequentist methods. The reader should be aware, however,
that nonparametric Bayesian methods are attracting increasing interest (Walker ef al.,
1999; Neal, 2000; Miiller and Quintana, 2004; Teh er al., 2006).

Let us start with a discussion of histogram methods for density estimation, which
we have already encountered in the context of marginal and conditional distributions
in Figure 1.11 and in the context of the central limit theorem in Figure 2.6. Here we
explore the properties of histogram density models in more detail, focussing on the
case of a single continuous variable x. Standard histograms simply partition z into
distinct bins of width A; and then count the number n; of observations of x falling
in bin 7. In order to turn this count into a normalized probability density, we simply
divide by the total number N of observations and by the width A; of the bins to
obtain probability values for each bin given by

Ty

n; = 21944
Pi= 5 A, ( )

for which it is easily seen that [ p(x)dx = 1. This gives a model for the density
p(x) that is constant over the width of each bin, and often the bins are chosen to have
the same width A; = A.

Figure 2.24 An illustration of the histogram approach 5
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to density estimation, in which a data set
of 50 data points is generated from the
distribution shown by the green curve.
Histogram density estimates, based on
(2.241), with a common bin width A are
shown for various values of A.

In Figure 2.24, we show an example of histogram density estimation. Here
the data is drawn from the distribution, corresponding to the green curve, which is
formed from a mixture of two Gaussians. Also shown are three examples of his-
togram density estimates corresponding to three different choices for the bin width
A. We see that when A is very small (top figure), the resulting density model is very
spiky, with a lot of structure that is not present in the underlying distribution that
generated the data set. Conversely, if A is too large (bottom figure) then the result is
a model that is too smooth and that consequently fails to capture the bimodal prop-
erty of the green curve. The best results are obtained for some intermediate value
of A (middle figure). In principle, a histogram density model is also dependent on
the choice of edge location for the bins, though this is typically much less significant
than the value of A.

Note that the histogram method has the property (unlike the methods to be dis-
cussed shortly) that, once the histogram has been computed, the data set itself can
be discarded, which can be advantageous if the data set is large. Also, the histogram
approach is easily applied if the data points are arriving sequentially.

In practice, the histogram technique can be useful for obtaining a quick visual-
ization of data in one or two dimensions but is unsuited to most density estimation
applications. One obvious problem is that the estimated density has discontinuities
that are due to the bin edges rather than any property of the underlying distribution
that generated the data. Another major limitation of the histogram approach is its
scaling with dimensionality. If we divide each variable in a D-dimensional space
into M bins, then the total number of bins will be M. This exponential scaling
with [ is an example of the curse of dimensionality. In a space of high dimensional-
ity, the quantity of data needed to provide meaningful estimates of local probability
density would be prohibitive.

The histogram approach to density estimation does, however, teach us two im-
portant lessons. First, to estimate the probability density at a particular location,
we should consider the data points that lie within some local nei ghbourhood of that
point. Note that the concept of locality requires that we assume some form of dis-
tance measure, and here we have been assuming Euclidean distance. For histograms,
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this neighbourhood property was defined by the bins, and there is a natural ‘smooth-
ing’ parameter describing the spatial extent of the local region, in this case the bin
width. Second, the value of the smoothing parameter should be neither too large nor
too small in order to obtain good results. This is reminiscent of the choice of model
complexity in polynomial curve fitting discussed in Chapter | where the degree M
of the polynomial, or alternatively the value o of the regularization parameter, was
optimal for some intermediate value, neither too large nor too small. Armed with
these insights, we turn now to a discussion of two widely used nonparametric tech-
niques for density estimation, kernel estimators and nearest neighbours, which have
better scaling with dimensionality than the simple histogram model.

2.5.1 Kernel density estimators

Let us suppose that observations are being drawn from some unknown probabil-
ity density p(x) in some D-dimensional space, which we shall take to be Euclidean,
and we wish to estimate the value of p(x). From our earlier discussion of locality,
let us consider some small region R containing x. The probability mass associated
with this region is given by

P= / p(x) dx. (2.242)
JR

Now suppose that we have collected a data set comprising N observations drawn
from p(x). Because each data point has a probability P of falling within 'R, the total
number K of points that lie inside R will be distributed according to the binomial
distribution N1

ST DY AV E K1 o py1-K

Bin(K|N, P) = KN K1 K)!P (1-P) 5. (2.243)
Using (2.11), we see that the mean fraction of points falling inside the region is
E[K/N] = P, and similarly using (2.12) we see that the variance around this mean
is var[lK/N] = P(1 — P)/N. For large N, this distribution will be sharply peaked
around the mean and so

K~ NP (2.244)

If, however, we also assume that the region R is sufficiently small that the probability
density p(x) is roughly constant over the region, then we have

P~ p(x)V (2.245)

where V' is the volume of /R. Combining (2.244) and (2.245), we obtain our density

estimate in the form ®
1
= : 2.246

Note that the validity of (2.246) depends on two contradictory assumptions, namely
that the region R be sufficiently small that the density is approximately constant over
the region and yet sufficiently large (in relation to the value of that density) that the
number K of points falling inside the region is sufficient for the binomial distribution
to be sharply peaked.
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We can exploit the result (2.246) in two different ways. Either we can fix A" and
determine the value of V' from the data, which gives rise to the K -nearest-neighbour
technique discussed shortly, or we can fix V' and determine K from the data, giv-
ing rise to the kernel approach. It can be shown that both the K -nearest-neighbour
density estimator and the kernel density estimator converge to the true probability
density in the limit N — oo provided V' shrinks suitably with IV, and K grows with
N (Duda and Hart, 1973).

We begin by discussing the kernel method in detail, and to start with we take
the region R to be a small hypercube centred on the point x at which we wish to
determine the probability density. In order to count the number K of points falling
within this region, it is convenient to define the following function

oL wl €172, i=1,...,D,
f(u) = { 0, otherwise (2.247)

which represents a unit cube centred on the origin. The function £(u) is an example
of a kernel function, and in this context is also called a Parzen window. From (2.247),
the quantity k((x — x,,)/h) will be one if the data point x,, lies inside a cube of side
h centred on x, and zero otherwise. The total number of data points lying inside this

cube will therefore be N
- X — X,
K=S "k ( n ) . 2,248
K Z i ( )

n=1

Substituting this expression into (2.246) then gives the following result for the esti-

mated density at x
N
1 1 X — Xp
= — 2.249
P = 5 2 5t ( h ) (2:249)

n=1

where we have used V = h” for the volume of a hypercube of side i in D di-
mensions. Using the symmetry of the function /(u), we can now re-interpret this
equation, not as a single cube centred on x but as the sum over N cubes centred on
the IV data points x,,.

As it stands, the kernel density estimator (2.249) will suffer from one of the same
problems that the histogram method suffered from, namely the presence of artificial
discontinuities, in this case at the boundaries of the cubes. We can obtain a smoother
density model if we choose a smoother kernel function, and a common choice is the
Gaussian, which gives rise to the following kernel density model

N 2

1 1 HX - X'rLHH
ol b e 2.250
p(X) N z:l (27”‘?,2)1./‘2 Y { 2}12 ( )

where h represents the standard deviation of the Gaussian components. Thus our
density model is obtained by placing a Gaussian over each data point and then adding
up the contributions over the whole data set, and then dividing by NV so that the den-
sity is correctly normalized. In Figure 2.25, we apply the model (2.250) to the data
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Figure 2.25

lllustration of the kernel density model

(2.250) applied to the same data set used : h = 0.005 ‘
to demonstrate the histogram approach in
Figure 2.24. We see that I acts as a 0

smoothing parameter and that if it is set 0 05
too small (top panel), the result is a very 5 .
noisy density model, whereas if it is set
too large (bottom panel), then the bimodal
nature of the underlying distribution from
which the data is generated (shown by the " 0.5 1
green curve) is washed out. The bestden- 5 ‘

sity model is obtained for some intermedi- g
, %

ate value of i (middle panel).
0 0.5 1

set used earlier to demonstrate the histogram technique. We see that, as expected,

the parameter /v plays the role of a smoothing parameter, and there is a trade-off

between sensitivity to noise at small i and over-smoothing at large h. Again, the
optimization of / is a problem in model complexity, analogous to the choice of bin
width in histogram density estimation, or the degree of the polynomial used in curve
fitting.

We can choose any other kernel function k(u) in (2.249) subject to the condi-
tions

(2.251)
(2.252)

which ensure that the resulting probability distribution is nonnegative everywhere
and integrates to one. The class of density model given by (2.249) is called a kernel
density estimator, or Parzen estimator. It has a great merit that there is no compu-
tation involved in the ‘training’ phase because this simply requires storage of the
training set. However, this is also one of its great weaknesses because the computa-
tional cost of evaluating the density grows linearly with the size of the data set.

2.5.2 Nearest-neighbour methods

One of the difficulties with the kernel approach to density estimation is that the
parameter /i governing the kernel width is fixed for all kernels. In regions of high
data density, a large value of h may lead to over-smoothing and a washing out of
structure that might otherwise be extracted from the data. However, reducing h may
lead to noisy estimates elsewhere in data space where the density is smaller. Thus
the optimal choice for i may be dependent on location within the data space. This
issue is addressed by nearest-neighbour methods for density estimation.

We therefore return to our general result (2.246) for local density estimation,
and instead of fixing V' and determining the valie of K from the data, we consider
a fixed value of K and use the data to find an appropriate value for V. To do this,
we consider a small sphere centred on the point x at which we wish to estimate the

Figure 2.26

Exercise 2.61
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lllustration of K'-nearest-neighbour den- 5
sity estimation using the same data set K=1

as in Figures 2.25 and 2.24. We see
that the parameter K governs the degree 0

of smoothing, so that a small value of 0
0 0.5 l

K leads to a very noisy density model j5
(top panel), whereas a large value (bot-
tom panel) smoothes out the bimodal na-
ture of the true distribution (shown by the 0
green curve) from which the data set was "
generated.

wn

density p(x), and we allow the radius of the sphere to grow until it contains precisely
K data points. The estimate of the density p(x) is then given by (2.246) with V' set to
the volume of the resulting sphere. This technique is known as K nearest neighbours
and is illustrated in Figure 2.26, for various choices of the parameter K, using the
same data set as used in Figure 2.24 and Figure 2.25. We see that the value of K
now governs the degree of smoothing and that again there is an optimum choice for
I that is neither too large nor too small. Note that the model produced by K nearest
neighbours is not a true density model because the integral over all space diverges.

We close this chapter by showing how the K -nearest-neighbour technique for
density estimation can be extended to the problem of classification. To do this, we
apply the K -nearest-neighbour density estimation technique to each class separately
and then make use of Bayes’ theorem. Let us suppose that we have a data set com-
prising Ny, points in class C; with N points in total, so that >, Np = N. If we
wish to classify a new point x, we draw a sphere centred on x containing precisely
K points irrespective of their class. Suppose this sphere has volume V" and contains
K, points from class Cj.. Then (2.246) provides an estimate of the density associated
with each class

Ky
Cr) = . 2.253
p(x[Ck) NV ( )
Similarly, the unconditional density is given by
K
= 2.254
p(x) = 5y (2.254)
while the class priors are given by
Ny,
P(Ck) = - (2.255)

We can now combine (2.253), (2.254), and (2.255) using Bayes’ theorem to obtain
the posterior probability of class membership

p(x|Ci)p(Cr) _ Kk

i) == (2.256)

P(Crlx) =
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rf;?uf:goi-;??clagas)iﬁzr th: ﬁ{e-\r:’ear;ﬁ;- T2 ‘r An interesting property of the nearest-neighbour (X = 1) classifier is that, in the
shogwn by the black c;iamon d, ispclas-, . . limit N — oo, the error rate is never more than twice the minimum achievable error

sified according to the majority class
membership of the K closest train-
ing data points, in this case K =
3. (b) In the nearest-neighbour
(K = 1) approach to classification,

rate of an optimal classifier, i.e., one that uses the true class distributions (Cover and
Hart, 1967) .

As discussed so far, both the K -nearest-neighbour method, and the kernel den-
sity estimator, require the entire training data set to be stored, leading to expensive
computation if the data set is large. This effect can be offset, at the expense of some

the resulting decision boundary is " e ° x : ! .
composed of hyperplanes that form N additional one-off computation, by constructing tree-based search structures to allow
perpendicular bisectors of pairs of e o (approximate) near neighbours to be found efficiently without doing an exhaustive
points from different classes. search of the data set. Nevertheless, these nonparametric methods are still severely
° d =+ limited. On the other hand, we have seen that simple parametric models are very
(a) o restricted in terms of the forms of distribution that they can represent. We therefore

need to find density models that are very flexible and yet for which the complexity
of the models can be controlled independently of the size of the training set, and we
shall see in subsequent chapters how to achieve this.

If we wish to minimize the probability of misclassification, this is done by assigning
the test point x to the class having the largest posterior probability, corresponding to
the largest value of K, /K. Thus to classify a new point, we identify the K nearest
points from the training data set and then assign the new point to the class having the
largest number of representatives amongst this set. Ties can be broken at random.
The particular case of K = 1 is called the nearest-neighbour rule, because a test
point is simply assigned to the same class as the nearest point from the training set.

Exercises
() R Verify that the Bernoulli distribution (2.2) satisfies the following prop-

erties

1
These concepts are illustrated in Figure 2.27. . B
In Figure 2.28, we show the results of applying the K -nearest-neighbour algo- ZP(-‘WH) =1 (2.257)
rithm to the oil flow data, introduced in Chapter 1, for various values of K. As =0
expected, we see that K controls the degree of smoothing, so that small K produces Elz] = p (2.258)
many small regions of each class, whereas large K leads to fewer larger regions. var[z] = p(l— p). (2.259)

Show that the entropy H[z] of a Bernoulli distributed random binary variable x is
given by

K =1 ) K=3 ) K =31 Hlz] = —plnp — (1 — p) In(1 — p). (2.260)
2 ;
f..'-. :!:“' o " s : ;.__ S e :!_.. et 2.2 (%%) The form of the_ Bernoulli dis.tribu.tion givcp by (2.2) is not symmetric be-
. o - | ‘ tween the two values of z. In some situations, it will be more convenient to use an
, ’ 0 equivalent formulation for which € {—1, 1}, in which case the distribution can be
. . o written
v ° . 7 ° b ° 1—x)/2 (14x)/2
| ° | ° . | \ o ]. — ( 1
D e Lt G 2 plalu) = (=54 ~T8 2261
2 ® . i Sy 2 Sile 2 2
v, ., o . ®, . .o . ': . -o ..
2% el / Ay v s where p € [—1, 1]. Show that the distribution (2.261) is normalized, and evaluate its
® ow . ® e ® ow .
R, ~... / 3 N . mean, variance, and entropy.
00 1 o 2 00 I . 2 i I -—— 2.3 (x») [II In this exercise, we prove that the binomial distribution (2.9) is nor-

Figure 2.28 Plot of 200 data points from the oil data set showing values of = plotted against z7, yvhere the
red, green, and blue points correspond to the ‘laminar’, ‘annular’, and ‘homogeneous’ classes, respectively. Also
shown are the classifications of the input space given by the K-nearest-neighbour algorithm for various values

of K.

malized. First use the definition (2.10) of the number of combinations of 1 identical
objects chosen from a total of N to show that

Bl )= ()

(2.262)
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24

2.5

2.6

Use this result to prove by induction the following result

N
1+2)¥ =) (N)r (2.263)
m

m=0

which is known as the binomial theorem, and which is valid for all real values of .
Finally, show that the binomial distribution is normalized, so that

N N
> ( ),1,'”(1 —wVm =1 (2.264)
m

=0

which can be done by first pulling out a factor (1 — ;)" out of the summation and
then making use of the binomial theorem.

(%) Show that the mean of the binomial distribution is given by (2.11). To do this,
differentiate both sides of the normalization condition (2.264) with respect to ;. and
then rearrange to obtain an expression for the mean of n. Similarly, by differentiating
(2.264) twice with respect to ;o and making use of the result (2.11) for the mean of
the binomial distribution prove the result (2.12) for the variance of the binomial.

(=) Kl In this exercise, we prove that the beta distribution, given by (2.13), is
correctly normalized, so that (2.14) holds. This is equivalent to showing that

N . 5
e [a)*(b)
N = ) dp = 2.265
/[; p (L — ) dp F(a 1 0) (2.265)
From the definition (1.141) of the gamma function, we have
OO OO
I'(a)I'(b) = / exp(—x)x ' da / exp(—y)y" " dy. (2.260)
0 Jo

Use this expression to prove (2.265) as follows. First bring the integral over y inside
the integrand of the integral over x, next make the change of variable { = v + =
where 1 is fixed, then interchange the order of the 2 and ¢ integrations, and finally
make the change of variable o = ¢y where ¢ is fixed.

(*) Make use of the result (2.265) to show that the mean, variance, and mode of the
beta distribution (2.13) are given respectively by

a

Byl = —— (2.267)
ab
: = 2.268
varlu] (a+b)2(a+b+1) (208
-1
mode[u] = ﬁ (2.269)
a+b—

2.7

2.8

2.9

2.10

Exercises 129

(x*) Consider a binomial random variable z given by (2.9), with prior distribution
for i given by the beta distribution (2.13), and suppose we have observed m occur-
rences of # = 1 and [ occurrences of 2z = 0. Show that the posterior mean value of z
lies between the prior mean and the maximum likelihood estimate for 1. To do this,
show that the posterior mean can be written as A times the prior mean plus (I—-X)
times the maximum likelihood estimate, where 0 < A\ < 1. This illustrates the con-
cept of the posterior distribution being a compromise between the prior distribution
and the maximum likelihood solution.

(*) Consider two variables  and y with joint distribution p(z, ). Prove the follow-
ing two results

Elz] = E,[E;[z|y]] (2.270)
varfz] = E, [varg[z|y]] 4 var, [E.[z|y]]. (2.271)

Here £, [|y] denotes the expectation of 2 under the conditional distribution p(xly),
with a similar notation for the conditional variance.

(++ )[R - In this exercise, we prove the normalization of the Dirichlet dis-
tribution (2.38) using induction. We have already shown in Exercise 2.5 that the
beta distribution, which is a special case of the Dirichlet for A/ = 2, is normalized.
We now assume that the Dirichlet distribution is normalized for M — 1 variables
and prove that it is normalized for M variables. To do this, consider the Dirichlet
distribution over M variables, and take account of the constraint Zi”_ i = 1 by
eliminating iy, so that the Dirichlet is written

M—1 M1 o —1
par(fins o piar—1) = Cyg H gt (1 - Z M) (2.272)

k=1 j=1

and our goal is to find an expression for C'y;. To do this, integrate over fij7_1, taking
care over the limits of integration, and then make a change of variable so that this
integral has limits 0 and 1. By assuming the correct result for C'y,_; and making use
of (2.265), derive the expression for C'y;.

(%) Using the property I'(x + 1) = 2T'(z) of the gamma function, derive the
following results for the mean, variance, and covariance of the Dirichlet distribution
given by (2.38)

a;

Elp;] = - (2.273)
o ailag = ay)
var[u;] = gt 1) (2.274)

(e 7187}

‘m, j#l (2.275)

cov |, 1]

where « is defined by (2.39).
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2.1

2.12

2.13

2.14

2.15

() B By expressing the expectation of In z2; under the Dirichlet distribution
(2.38) as a derivative with respect to o;, show that

Elln y;] = ¥(a;) — ¥(a) (2.276)

where oy is given by (2.39) and

¥(a) = dﬁ InT(a) (2.277)

a
is the digamma function.

(*) The uniform distribution for a continuous variable x is defined by

U(z|a,b) = a<x< b (2.278)

b—a’

Verify that this distribution is normalized, and find expressions for its mean and
variance.

(x«) Evaluate the Kullback-Leibler divergence (1.113) between two Gaussians
p(x) = N(x|p, E) and g(x) = N (x|m, L).

(<) K This exercise demonstrates that the multivariate distribution with max-
imum entropy, for a given covariance, is a Gaussian. The entropy of a distribution
p(x) is given by

H[x] = — /‘p(x) In p(x) dx. (2.279)

We wish to maximize H[x] over all distributions p(x) subject to the constraints that
p(x) be normalized and that it have a specific mean and covariance, so that

/. p(x)dx =1 (2.280)
'/.p(x)x dx =p (2.281)
/]J(X)(X —p)(x —p)Tdx = X. (2.282)
By performing a variational maximization of (2.279) and using Lagrange multipliers

to enforce the constraints (2.280), (2.281), and (2.282), show that the maximum
likelihood distribution is given by the Gaussian (2.43).

(x+) Show that the entropy of the multivariate Gaussian N (x|, ) is given by

H[x] = % In|X| + g (I + In(27)) (2.283)

where D is the dimensionality of x.

2.16

217

2.18

2.19

2.20

2.21

2.22
2.23
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() [T Consider two random variables =, and z having Gaussian distri-
butions with means /.1, 1t and precisions 7y, 7 respectively. Derive an expression
for the differential entropy of the variable © = 1 + x5. To do this, first find the
distribution of « by using the relation

p(x) = / plx|xe)p(xs) das (2.284)

— 00

and completing the square in the exponent. Then observe that this represents the
convolution of two Gaussian distributions, which itself will be Gaussian, and finally
make use of the result (1.110) for the entropy of the univariate Gaussian.

() M Consider the multivariate Gaussian distribution given by (2.43). By
writing the precision matrix (inverse covariance matrix) X' as the sum of a sym-
metric and an anti-symmetric matrix, show that the anti-symmetric term does not
appear in the exponent of the Gaussian, and hence that the precision matrix may be
taken to be symmetric without loss of generality. Because the inverse of a symmetric
matrix is also symmetric (see Exercise 2.22), it follows that the covariance matrix
may also be chosen to be symmetric without loss of generality.

(x+%) Consider a real, symmetric matrix 3 whose eigenvalue equation is given
by (2.45). By taking the complex conjugate of this equation and subtracting the
original equation, and then forming the inner product with eigenvector u;, show that
the eigenvalues A; are real. Similarly, use the symmetry property of 3 to show that
two eigenvectors u; and u; will be orthogonal provided A; # A;. Finally, show that
without loss of generality, the set of eigenvectors can be chosen to be orthonormal,
so that they satisfy (2.46), even if some of the eigenvalues are zero.

(x*) Show that a real, symmetric matrix X having the eigenvector equation (2.45)
can be expressed as an expansion in the eigenvectors, with coefficients given by the
eigenvalues, of the form (2.48). Similarly, show that the inverse matrix > ' has a
representation of the form (2.49).

() R A positive definite matrix X can be defined as one for which the
quadratic form
a'Za (2.285)

is positive for any real value of the vector a. Show that a necessary and sufficient
condition for ¥ to be positive definite is that all of the eigenvalues \; of X, defined
by (2.45), are positive.

(*) Show that a real, symmetric matrix of size 1D x D has D(D + 1)/2 independent
parameters,

() M Show that the inverse of a symmetric matrix is itself symmetric.

(x %) By diagonalizing the coordinate system using the eigenvector expansion (2.45),
show that the volume contained within the hyperellipsoid corresponding to a constant
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2.24

2.25

2.26

2.27

2.28

Mahalanobis distance A is given by
Vp|Z|/2AP (2.286)

where Vp is the volume of the unit sphere in 1 dimensions, and the Mahalanobis
distance is defined by (2.44).

(<) I Prove the identity (2.76) by multiplying both sides by the matrix

A B
(C D) (2.287)

and making use of the definition (2.77).

(*%) In Sections 2.3.1 and 2.3.2, we considered the conditional and marginal distri-
butions for a multivariate Gaussian. More generally, we can consider a partitioning
of the components of x into three groups x,, X, and x., with a corresponding par-
titioning of the mean vector g and of the covariance matrix ¥ in the form

g E@a Etmb Em:
M= Hy | 3= Ebu. Ebb 2{;(» i (2288)
He Zc’rb E('b E{h‘:

By making use of the results of Section 2.3, find an expression for the conditional
distribution p(x,|x;) in which x,. has been marginalized out.

(*x) A very useful result from linear algebra is the Woodbury matrix inversion
formula given by

(A+BCD) '=A"'-A'B(C' +DA'B) 'DA . (2.289)
By multiplying both sides by (A + BCD) prove the correctness of this result.

(*) Let x and z be two independent random vectors, so that p(x,z) = p(x)p(z).
Show that the mean of their sum y = x -+ z is given by the sum of the means of each
of the variable separately. Similarly, show that the covariance matrix of y is given by
the sum of the covariance matrices of x and z. Confirm that this result agrees with
that of Exercise 1.10.

(o) KA Consider a joint distribution over the variable

” (X) (2.290)
y

whose mean and covariance are given by (2.108) and (2.105) respectively. By mak-
ing use of the results (2.92) and (2.93) show that the marginal distribution p(x) is
given (2.99). Similarly, by making use of the results (2.81) and (2.82) show that the
conditional distribution p(y|x) is given by (2.100).

2.29

2.30

2.31

2.32

2.33

2.34

2.35

2.36
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(**) Using the partitioned matrix inversion formula (2.76), show that the inverse of
the precision matrix (2.104) is given by the covariance matrix (2.105).

(*) By starting from (2.107) and making use of the result (2.105), verify the result
(2.108).

(*%)  Consider two multidimensional random vectors x and z having Gaussian
distributions p(x) = N (x|, B) and p(z) = N (z|p,, ,) respectively, together
with their sumy = x+z. Use the results (2.109) and (2.110) to find an expression for
the marginal distribution p(y) by considering the linear-Gaussian model comprising
the product of the marginal distribution p(x) and the conditional distribution p(y]|x).

(x* %) m This exercise and the next provide practice at manipulating the
quadratic forms that arise in linear-Gaussian models, as well as giving an indepen-
dent check of results derived in the main text. Consider a joint distribution p(x, y)
defined by the marginal and conditional distributions given by (2.99) and (2.100).
By examining the quadratic form in the exponent of the joint distribution, and using
the technique of ‘completing the square’ discussed in Section 2.3, find expressions
for the mean and covariance of the marginal distribution p(y) in which the variable
x has been integrated out. To do this, make use of the Woodbury matrix inversion
formula (2.289). Verify that these results agree with (2.109) and (2.110) obtained
using the results of Chapter 2.

(x*x) Consider the same joint distribution as in Exercise 2.32, but now use the
technique of completing the square to find expressions for the mean and covariance
of the conditional distribution p(x|y). Again, verify that these agree with the corre-
sponding expressions (2.111) and (2.112).

(x) K To find the maximum likelihood solution for the covariance matrix
of a multivariate Gaussian, we need to maximize the log likelihood function (2.118)
with respect to X, noting that the covariance matrix must be symmetric and positive
definite. Here we proceed by ignoring these constraints and doing a straightforward
maximization. Using the results (C.21), (C.26), and (C.28) from Appendix C, show
that the covariance matrix ¥ that maximizes the log likelihood function (2.118) is
given by the sample covariance (2.122). We note that the final result is necessarily
symmetric and positive definite (provided the sample covariance is nonsingular).

(x*) Use the result (2.59) to prove (2.62). Now, using the results (2.59), and (2.62),
show that
]E[X'nxm] - u,u'T + L X (229])

where x;, denotes a data point sampled from a Gaussian distribution with mean I
and covariance X, and [,,,,, denotes the (n, m) element of the identity matrix. Hence
prove the result (2.124).

(++) R Using an analogous procedure to that used to obtain (2.126), derive
an expression for the sequential estimation of the variance of a univariate Gaussian
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2.37

2.38

2.39

2.40

2.41

2.42
2.43

distribution, by starting with the maximum likelihood expression

N

JI\H N Z - H (2.292)

n=1

Verify that substituting the expression for a Gaussian distribution into the Robbins-
Monro sequential estimation formula (2.135) gives a result of the same form, and
hence obtain an expression for the corresponding coefficients a .

(%) Using an analogous procedure to that used to obtain (2.126), derive an ex-
pression for the sequential estimation of the covariance of a multivariate Gaussian
distribution, by starting with the maximum likelihood expression (2.122). Verify that
substituting the expression for a Gaussian distribution into the Robbins-Monro se-
quential estimation formula (2.135) gives a result of the same form, and hence obtain
an expression for the corresponding coefficients a .

(x) Use the technique of completing the square for the quadratic form in the expo-
nent to derive the results (2.141) and (2.142).

(%) Starting from the results (2.141) and (2.142) for the posterior distribution
of the mean of a Gaussian random variable, dissect out the contributions from the

first N — 1 data points and hence obtain expressions for the sequential update of

iy and o%. Now derive the same results starting from the posterior distribution
plpley, .. en—q) = N(plpy—1,0% ) and multiplying by the likelihood func-
tion p(xn|p) = N(axn|p, o?) and then completing the square and normalizing to
obtain the posterior distribution after N observations.

(x+) M Consider a D-dimensional Gaussian random variable x with distribu-

tion N'(x|pt, ) in which the covariance 3 is known and for which we wish to infer

the mean g from a set of observations X = {x,,...,xx}. Given a prior distribution
p(p) = N (], o), find the corresponding posterior distribution p(g|X).

(x) Use the definition of the gamma function (1.141) to show that the gamma dis-
tribution (2.146) is normalized.

(%) Evaluate the mean, variance, and mode of the gamma distribution (2.146).

(») The following distribution

; q 2
o(zlo?. a) = o [ — 2.293
D(r\a ,q) 2(202}1/(;1"(1/q) (xp( 202 ( J

is a generalization of the univariate Gaussian distribution. Show that this distribution
is normalized so that

00
/ plz|o? q)de =1 (2.294)
and that it reduces to the Gaussian when ¢ = 2. Consider a regression model in
which the target variable is given by ¢ = y(x,w) + ¢ and € is a random noise

2.44

2.45

2.46
2.47

2.48

2.49

2.50

2.51
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variable drawn from the distribution (2.293). Show that the log likelihood function

over w and o2, for an observed data set of input vectors X = {xy,...,xx} and
corresponding target variables t = ({y,...,¢x)7, is given by
N

Inp(t|X, w,o?

N .
Y(xp, W) — 1|7 — —In(207) + const ~ (2.295)
q

where ‘const’ denotes terms independent of both w and 2. Note that, as a function
of w, this is the L, error function considered in Section 1.5.5.

(x%) Consider a univariate Gaussian distribution N (x|, 7~") having conjugate
Gaussian-gamma prior given by (2.154), and a data set X = {xy,..., 2y} of i.i.d.
observations. Show that the posterior distribution is also a Gaussian-gamma distri-
bution of the same functional form as the prior, and write down expressions for the
parameters of this posterior distribution.

() Verify that the Wishart distribution defined by (2.155) is indeed a conjugate
prior for the precision matrix of a multivariate Gaussian.

() B Verify that evaluating the integral in (2.158) leads to the result (2.159).

() BT Show that in the limit v — oo, the t-distribution (2.159) becomes a
Gaussian. Hint: ignore the normalization coefficient, and simply look at the depen-
dence on .

(%) By following analogous steps to those used to derive the univariate Student’s
t-distribution (2.159), verify the result (2.162) for the multivariate form of the Stu-
dent’s t-distribution, by marginalizing over the variable 7 in (2.161). Using the
definition (2.161), show by exchanging integration variables that the multivariate
t-distribution is correctly normalized.

() By using the definition (2.161) of the multivariate Student’s t-distribution as a
convolution of a Gaussian with a gamma distribution, verify the properties (2.164),
(2.165), and (2.166) for the multivariate t-distribution defined by (2.162).

(%) Show that in the limit v — oo, the multivariate Student’s t-distribution (2.162)
reduces to a Gaussian with mean g and precision A.

() I The various trigonometric identities used in the discussion of periodic
variables in this chapter can be proven easily from the relation

exp(id) = cos A +isin A (2.296)
in which ¢ is the square root of minus one. By considering the identity
exp(id) exp(—id) =1 (2.297)
prove the result (2.177). Similarly, using the identity
cos(A — B) = Rexp{i(4A — B)}

(2.298)
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where i denotes the real part, prove (2.178). Finally, by using sin(4 — B) =
Sexp{i(A — B)}, where & denotes the imaginary part, prove the result (2.183).

(%)  For large m, the von Mises distribution (2.179) becomes sharply peaked
around the mode 0y. By defining & = m'/?(f — 6,) and making the Taylor ex-
pansion of the cosine function given by
(Ez 1
cosa =1 — 5 + O(a”) (2.299)

show that as m — oo, the von Mises distribution tends to a Gaussian.

(x) Using the trigonometric identity (2.183), show that solution of (2.182) for 0, is
given by (2.184).

(x) By computing first and second derivatives of the von Mises distribution (2.179),
and using Iy(m) > 0 for m > 0, show that the maximum of the distribution occurs
when ) = ¢, and that the minimum occurs when 6 = 6, + 7 (mod 27).

(x) By making use of the result (2.168), together with (2.184) and the trigonometric
identity (2.178), show that the maximum likelihood solution rmy;;, for the concentra-
tion of the von Mises distribution satisfies A(m,) = 7 where 7 is the radius of the
mean of the observations viewed as unit vectors in the two-dimensional Euclidean
plane, as illustrated in Figure 2.17.

() K Express the beta distribution (2.13), the gamma distribution (2.146),
and the von Mises distribution (2.179) as members of the exponential family (2.194)
and thereby identify their natural parameters.

(x)  Verily that the multivariate Gaussian distribution can be cast in exponential
family form (2.194) and derive expressions for i, u(x), h(x) and g(n) analogous to
(2.220)-(2.223).

(x) The result (2.226) showed that the negative gradient of In (1) for the exponen-
tial family is given by the expectation of u(x). By taking the second derivatives of
(2.195), show that

—VVing(n) = Eu(x)u(x)"] — Elu(x)|E[u(x)"] = cov[u(x)]. (2.300)

(x) By changing variables using y = x/0, show that the density (2.236) will be
correctly normalized, provided f(z) is correctly normalized.

() K Consider a histogram-like density model in which the space x is di-
vided into fixed regions for which the density p(x) takes the constant value h; over
the i*" region, and that the volume of region i is denoted A;. Suppose we have a set
of N observations of x such that n; of these observations fall in region i. Using a
Lagrange multiplier to enforce the normalization constraint on the density, derive an
expression for the maximum likelihood estimator for the {h, }.

(*) Show that the A -nearest-neighbour density model defines an improper distribu-
tion whose integral over all space is divergent.

The focus so far in this book has been on unsupervised learning, including topics
such as density estimation and data clustering. We turn now to a discussion of super-
vised learning, starting with regression. The goal of regression is to predict the value
of one or more continuous farget variables ¢ given the value of a D-dimensional vec-
tor x of input variables. We have already encountered an example of a regression
problem when we considered polynomial curve fitting in Chapter 1. The polynomial
is a specific example of a broad class of functions called linear regression models,
which share the property of being linear functions of the adjustable parameters, and
which will form the focus of this chapter. The simplest form of linear regression
models are also linear functions of the input variables. However, we can obtain a
much more useful class of functions by taking linear combinations of a fixed set of
nonlinear functions of the input variables, known as basis functions. Such models
are linear functions of the parameters, which gives them simple analytical properties,
and yet can be nonlinear with respect to the input variables.
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