1. HMI with well-defined states

Suppose vou are stalking somebody. One of the premier rules of stalking
iz that the person being stalked will be less suspicious if you arrive at
6 common destination first. Say you hewve class with the person you are
stalking. ¥ou ait far enough amay from this person so that you carnnot hear
what thizs person iz saying. Howewver, you can pidkt up on hand gestures,
body langnage and overall mood. Now, your objechive is to infer from
these signals where that person plans to go for lunch on & partienlar dag
and to beat this person to the destination.

So in this model, the cbserved wariables are the mood, hand guestures,
and body langnage of a person on & partienlsr day The states are & ==t
of restanurants frequented by the person being stalked. The state emission
probabilities map each shate to a probability of cbesrving & type of signal.
For example, we could hawe a shate termed Arbys In this state, the
emission probabilities could be 51:0.2, 32: 0.6, 33: 0.2 and 54: 0.0, where
351...34 are catagorizabions of signals. Thetransition probabilities map the
probability of going to a restanrant on a certain day, given the restanrant
visited on the previous day. Bbr example, we know the probahbility of the
stallee frequenting the same restaurant two dagys in & row i= relatively low.

In order to train the model, we first conduct & training period where we
follow the stalkee after closs to o lunch destination. From the training
data, we can determine the tranamission probabilities and emission prob-
abilities becanze the states (restanrants) are well defined.



2) Shorter answer than for [/ 1: suppose we use an HMM to model rainfall,
The amonnt of rain oo &4 given day depends on the state of the donds, wind
pattern, pressure, etc. Theee stater depend on the states of the previme day.
We can ke a latent variable to model the clonds, ete., and the rainfall iz then
dependent on those states. Tt not obvioue to me what gtates we shonkd nee, ro
one option might be to build a model with K etates, where the gtate 2 indefined,
and espentially allow the ramfall patterns to cluster (with a4 temporal aspect)
to thoee K states ... whatever the states are. Training the model wonld look a
lot like: the single-sexnence HMM described above (asign defanlt parame, e
E step to amign day to states, then M step to modify params, then repeat).

The problem ix that it’s not clear what value K ghonld take, As the number iz
incressed, the likelibood of the meddel will increase, but at some paint the gain
in likelihood ®n't worth the incresse in eomplexity. 1 snppose there’s plenty
of theory abont where the entoff of prin-to-complety is reached, but 'm not
familiar with it. I'd guesst yom conkd try a4 wide range of K values, and pick
the one that macamizest In ik — c& {or Inik/ck ), for some constant value c {or
jnet inerease K notil that metric peaks). In this way, models are penalized for
having & larpe number of parameters, to connteract the mproved likelibood seen
by those nsing the large onmber.



31 Provide some of the details to derive 13.17.
ans (13.12) defines
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Tuke logs in (3.7) and get
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Subetitute (3.8) in (3.1) to get
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To get (3.10) from (3.9), [ used the definitions in (13.13) and (13.14) which are
equivalent to

P #tnk) = plzae = 1|z, EPH:' = E[znklxn lE":'Ld]

Cl#n1, i%nk) = Pl #n_1; = Znk = 1|z, E":'H:I = E[zﬁ_l,j Trnkl|E, B'DH]



4. The Viterbi alporithm iz uzed to determine a most likely sequence of Latent vari-
ables given an observed data sequence. This iz done by maximizing the lileeli-
hood of the complete data assuming the observed variables are fixed at the values
inthe observed data. Therefore it amounts to a straightfora ard application of the
max-summ alporithm to the tree representation of the HWMW in Fig. 1315 in the
text. It iz possible to determine the most lilcely sequence of latent variables by
computing the probabilities of cach and every path in the trellis reprezentation
of the HWIM given in Fig. 13.16. However the number of such paths prows ox-
poncntially with the number of obzerved data points. Viterbi algorithm reduces
the number of computations by examining all possible tranzitions of latent vari-
ahler hetween two successive time intervals and retaining only & out of the &2
possible paths for further consideration. The probability of any such path iz the
product of the tranzition probability invelved and the emizsion probability of the
data point given the latent variable state after the transition. By considering the
log of the probabilities it tums owt that thiz stratepy iz nothing but the max-sum
algorithm azin equation 13.68.

Equation 13.68 zhould have baen
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Witerbi algorithm iz good for determining a mest Likely sequence of latent vari-
ables piven obzerved data. On the other hand the alpha-beta algerithm iz good
for computing the margmals: of individual or couplets of latent variables to be
subzaquently uzed in the M-step of the EM algorithm for parameter 2stimation.
In other words, Viterbi alponthm i= the max-zum algorithm and the alpha-beta
algorithm iz the sum-product algerithm on the tree praphical reprezentation of a
HIWIN.



(5) Matlab Project: MLE & Viterbi Algorithm

(a)

If we assume that any person is squally likely to be talking, our transition probabilities are all equal.
For the observed sequence 1-1-0-0, the log-MLE is -5.7559, which corresponds to the speaker
sequence AACC,

(b)

Changing the parameters of the transition matrix A and starting state probability vector m will
certainiy influence the MLE for the observed sequence. For instance, note that Ann (the lead in our
MLE sequence above) will no longer start the conversation; Bridgette is now most likely to start the
conversation given the observation *1.” Further, Ann never gpeaks after women, and Bridgette loves
to talk, go the second speaker is again most likely to be Bridgette, given the observation “1.” Only
Doug is courageous enough to speak after Bridgette (rather than Chris as before), so he is most likely
the speaker of third cormmment, given the observation “0.”

Indeed, the MLE with the new transition matrix is now -42813, corresponding to the sequence
BEDC.

(c)
The new transition matix A i ag follows:
In-1
A B = [
B 0.4 i} o 0.7
B D.z2 ! D.5 0
Ink 0.z i 0.5 0.3
o D.z2 0.z o 0

The starting state probability vector @ is <0, 0.5, 0.5, 0= for A, B, C, and D, respectively.

(d)

To discover the MLE of the speaker sequence for the given set of 80 observations, we implemented
the Viterbi algorithm in Matlab (see Appendix). The implementation is typical In a forward pass, it
calculates the MLE (Omega) values and stores, in a £x) matrix, the index to the previous state in
the maximal likelihood path ending at each state z,, in the state trellis (note £=4). The algorithm
then backtracks through the =4 indices matrix to extract the most probable speaker sequence.

The log-MLE is calculated as -64.0020, corresponding to the gpeaker sequence
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% M LE of an Hhdh:

B sedqr sequence of observed X

% 5 lead-off probahilities

% A transition probability matrix

% B emission probability matrie

funetion [omeqa_max, path] = viterbi (seq, 5, 4, E)
slates = 4.
paths = zeros (states, lengthiseqy;

% leftrmost leaf "h" Factor hiz_ 1) = In{p(z_1ipiz_ 1jz_1}}
omeqa = logish + ogEseq( 1+ 1
For n="1: (lenath(seq 1)
for k=1 slates
[paths(k n+1}, transit{ k)] = max_indexilogiAlk: 1 + omegal;
k=k+1;
and
omaaa = logEliseqin+1 1300 + transit;
n=n+1;
and
[last, omena_max] = max_index [pmegal;
path = backirack (paths, last,
path = char(path;
#nd

funetion [ind, val] = ma=_index [stataes)
ind =1; val = states(1);
for i=2 : lengthistates)
if states(ih = val
ind = i;
val = slates(il
and
i=it+;
&nd
&

function path = backirack (paths, lasth
87 = size(paths),
path = zeros(1,52(1,21;
i=sx12%

%o first (the end) node
k = last;
wihile =0
pathii} = node(k);
k = paths(k,i};
i=i-T;
&nd
#nd

function val = node (k)
swyith b
wase
val ="A"
rase 2
val ='8,
rase 3
val ="C"
rase d
val ="
end

#nid



6. PRML Problem 13.5
To get 1318, we need to maximize
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Using Lagrange multipliers, this iz equivalent to maximizing,
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Differentiating wrt me, we get
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Flugging in the constraint, we get
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Substituting the term for A into my, we get
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which iz 13.18.



To get 1319, we need to maximize
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Using Lagrange multipliers, this iz equivalent to maximizing
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Differentiating wrt Ay, we get
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Flugging in the constraint, we get.
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Substituting the term for A inte Az, we get

A= Ef:z‘f(zn—l,j:znk:l
ik = =R i
Z::L Zn=2 f(zn—l,_:i, zni:'

which is 13.19.



