CS645 Homework Solutions, Week 11
Chapter 4, PRML

1. Provide some details to get 4.68.

Solution:

4.68: a,(x)=w x+w,

Given:
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4.63: a, =Inp(x|C,)p(C,)
Assuming that class conditionals are Gaussian we have:
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The term in the exponential is equivalent to:
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Plugging into 4.62, the constants in front will cancel, giving:
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Note that the second order terms involving x cancel out in the division.



T | _
Therefore, @, (X) =X 271, —EukZ ', +Inp(C,)
We can define additional terms so that:
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Which is 4.68.

2. PRML 4.5.

Solution:
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Expanding this above equation by using my — m; = wT (my — m;) and y,, = wTx,
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Using the fact that for matrices (AB)T = BT AT and rearranging we have
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3. Consider the situation in 4.2.1 where the covariances are not the same, but
there are only two classes. Derive an equation for the decision boundary. (As

suggested by the text, and figure 4.11, the form of the equation should be
quadratic).

Solution:

Suppose that the covariance matrices are not the same for the case of continuous
inputs modeled as Gaussians in the 2-class generative model for classification. Then
the equation for decision boundary can be found by determining the argument to the
logistic function a as follows
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Then the decision function for class 1 (posterior probability) is given by

o(xTSx — xTw + wyp).

The decision function for class 2 is similarly derived.




4. The chapter considers several ways to approach the same problem (what are
they?). Suppose you were the presenter this week, and wanted to make a figure
or chart that lists the most interesting ones and organizes them in some fashion,
and notes the similarities, differences, and relationships among them. Try your

hand at making such a chart or

picture.

Solution: Consider the following illustrations:

Method Type Assumptions | Multiple Classes | Outliers
Least Squares | Deterministic | Error measure Yes Bad
Fischer Deterministic - Yes Good
Perceptron Deterministic - No Good
Generative Probabilistic | Likelihood form Yes Good
Discriminative | Probabilistic - Yes Good

Classification problem
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...or if you prefer, this more colorful solution:




5. The data files (from assignment three) are made from images of faces and non-
faces as follows. The images were converted to black and white and divided
into a 7 by 7 grid, and each block was averaged to produce 49 numbers for each
image, which are recorded in the rows of the above files.

This is clearly not a very intelligent way to extract features for face detection,
but suffices for experimentation.

Recall that in assignment three you build a Naive-Bayes classifier from the data
on the assumption that the conditional densities are Gaussian.

For this assignment, try using the Fischer Linear Discriminant method to project
the training data onto a 1D space. Plot a historgram of the projected face and
non-face data. Is there a promising cutoff for classification? Apply the same
transform to the test data, and record how well your classifier works.

Solution:

I trained the fisher discriminant model with the training face data and plotted the
unscaled discriminant for each of the 100 face and 100 non-face points. Figure 1
shows this plot. It is pretty clear from the plot that there is a nice value for w that
separates the two sets. It is not a histogram, but I thought this plot was very nice in
illustrating the division in the two sets. I choose wy = —0.0291 as the dividing value.
Using this value can correctly discriminate between all the training data.

I used the value of wy to try and discriminate between the face and non-face test
data. I was surprised that the accuracy was perfect—I could correctly classify face or
non-face for all 26 samples in the test set.
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Figure 1: Plot of the fisher discriminate for the training data in the face and non-face sets.
The x-axis represents the index of 100 points in each of the sets and the y-axis is the w.
The red circles are the face points and the green crosses are the non-faces. Clearly there is
a nice discriminate around wy = —0.25.
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