
Problems for Week 12

Abhishek Bhattacharya

CSC 645

1)The data files (from assignment three) facetrain.txt nofacetrain.txt facetest.txt
nofacetest.txt are made from images of faces and non-faces as follows. The
images were converted to black and white and divided into a 7 by 7 grid, and
each block was averaged to produce 49 numbers for each image, which are
recorded in the rows of the above files.

This is clearly not a very intelligent way to extract features for face de-
tection, but suffices for experimentation.

Build a two layer neural network for this data that is trained using the
backprop method, and report on the performance on the test data.

ans. A two layer network looks like:

y =
M∑

j=1

w
(2)
j h

(D∑
i=1

w
(1)
ji xi + w

(1)
j0

)
+ w

(2)
0 (1)

where y is the posterior probability of Class 1. So the observation x is
classified into Class 1 if y > 0.5 else into Class 2. To motivate the choice
of h and initial weights, we look at the Fischer Linear Discriminant (FLD)
classifier. That can be expressed as:

y = h
(D∑

i=1

w
(1)
ji xi + w

(1)
j0

)
(2)

where h is the Heaviside function. We replace h by the smooth logistic
sigmoid:

h(x) =
1

1 + exp(−x)

and then (1) can be seen as a generalization of (2).

1

In the Network training phase, we start with the FLD weights obtained in
Home-work 11 and forward propagate to get z,y. Then we compute ∇E(w)
where

E(w) =
N∑

n=1

(yn − tn)2

Note that

h′(a) =
exp(−a)(

1 + exp(−a)
)2

To solve ∇E(w) = 0 numerically, we use the Online gradient descent ap-
proach. That is we feed x, t randomly from the training set and update w
sequentially:

w(τ+1) = w(τ) − η∇En(w(τ)), η = 0.001

We update the weights if there is a decrease in error. We find the test and
training sets errors for different M values to get the optimalM . Here is the
Matlab code for the algorithm.

N = 200; D=49;

x = [face_tr

noface_tr]; t = [zeros(100,1)

ones(100,1)];

x_test = [face_test

noface_test]; t_test = [zeros(13,1)

ones(13,1)];

x_test = [ones(26,1) x_test];

% randomly permute the training data

ind = randperm(N); x = x(ind,:); t = t(ind,:);

x = [ones(200,1) x]; % adding bias

Err = zeros(10,2); % traing error for different M

E_test = zeros(10,1); % test data error

miss_tr = zeros(10,1); % training missclassification

miss_test = zeros(10,1); % test missclassification

for M =1:10

%M=1;

%intial forward propogation

w1 = zeros(M+1,D+1); w1(2,2:D+1) = w(1:D);

w2 = zeros(1,M+1); w2(2) = 1;

2

a = x*w1’;

z = 1./(1 + exp(-a));

y = z*w2’;

% initial error value

Err(M,1) = 1/2*(norm(y-t))^2; Err(M,2)=1/2*(norm(y-t))^2;

% ONLINE ERROR GRADIENT

for n =1:200

Eold = 1/2*(norm(y-t))^2;

% ERROR GRADIENT USING (x_n,t_n)

delta2 = y(n)-t(n);

delta1 = zeros(M+1,1);

for j=0:M

delta1(j+1) = exp(-a(n,j+1))/(1+ exp(-a(n,j+1)))^2*w2(j+1)*delta2;

end

delE1 = delta1*x(n,:); delE2 = delta2*z(n,:);

% updating the weights & y: learning rate, eta

eta = 10^(-3); w1n = w1 - eta*delE1; w2n = w2 - eta*delE2;

% new forward propogation

an = x*w1’; zn = 1./(1 + exp(-an)); yn = zn*w2n’;

% new error valuue

En = 1/2*(norm(yn-t))^2;

% update the weights if the error decreases

if (En < Eold)

w1 = w1n; w2 = w2n; a = an; z = zn; y = yn; Err(M,2) = En;

end

end

% calculate error for test data

a_test = x_test*w1’; z_test = 1./(1 + exp(-a_test)); y_test = z_test*w2’;

E_test(M) = 1/2*(norm(y_test-t_test))^2;

% percent miss-classifications

y2 = (y>0.5); miss_tr(M) = (200-sum(t==y2))/2;

y2 = (y_test>0.5); miss_test(M) = (26-sum(t_test==y2))/26*100;

3

end

Err % training set error for different M

E_test % TEST SET ERROR FOR DIFF. M

miss_tr % percent missclassification in training data for different M

miss_test % percent missclassification in test data for different M

I try M = 1, 2, . . . , 10 and here are the errors values.
Intial FLD error on training data = 8.9369
Final error on training and test data:
M Training-Error Test-Error
1 1.4528 0.0000
2 2.0873 4.4882
3 2.7598 4.6895
4 3.1371 0.4936
5 1.6310 5.4834
6 1.5096 2.8033
7 1.7635 0.0007
8 1.2725 0.0018
9 3.1604 0.4206
10 3.0702 0.8241

M=8 seems to be the best choice. Percent missclassification for training
set data is 2% while that for the test data is 0.

4

