Solutions to Week 4 Problems

Compiled by Ernesto Brau and Anurag Katiyar
Note: most of these solutions are solutions by students.

1. The first half of chapter 8 is about diagrammatic representations of
probability distributions known as graphical models. It talks about
how joint probability distribution over random variables can be broken
down in to factors. The graphs help us to infer the concept of condi-
tional independence. The end the first half talks about the potential
functions, partitions, markov blanket and markov random fields. The
second half of chapter 8 (from 8.3.4 on) is mostly about inference on
graphical models. We first need to decide what we mean by infer-
ence, in terms of graphical models: calculating marginal and posterior
distributions given a joint distribution. The author first discusses an
efficient way to do inference (to calculate the marginal probability of
all of the variables, given the joint distribution) when the graph is a
chain. From there, we can generalize the result to work trees and poly-
trees, using the new concept of ‘factor graph’. On these factor graphs,
we can apply two algorithms — sum-product and max-sum — to infer
marginal probabilities. The chapter ends with a brief description on
how to solve inference problems on general graphs.

2. For ease of reading, I will define 1;; = v; j(zs, ;). If we fill in the
steps, we have
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3.

Up to now, we have only used the fact that the sum over each xj only
affects two potential functions, and the rest can be taken out of the
summation. We can do the same thing one more time — noting that
everything to the right of the summation over x,4; is independent of
everything to the left of it — to get
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A standard directed tree is moral because every node has one
unique parent. Hence the moral graph could be achieved by sim-
ply dropping the arrows.

No it is not moral because its a polytree where each node has
more than one parent. The graph that converts this directed
graph to a moral graph is at the end of this pdf document.

In this case, the potential functions are just products of the con-
ditional probabilities that make up the joint distribution. Re-
membering that each clique has a potential function, we have
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Graphs included at the end of the pdf.

To construct the factor graph we first reprsent the probability
distribution given by the graph

p(w2)p(z1)p(w3)p(za|1, T2, 23)p(25|21, 23)P(T7|T5, T4) (W6 |T4).

We now create variable nodes in the factor graph corresponding
to the nodes of the directed graph and then create factor nodes
corresponding to the conditional distribution and finally add ap-
propriate nodes. See the figure at the end of this pdf. Each factor
will be equal to the confitional probability of the nodes it neigh-
bors in the graph. If done correctly, each factor node will only
neighbor nodes that are dependant on each other in some way.
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If we use the fact that p(x) =[]
have
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In order to better understand this, we must remember that X; U Xo U
-+~ U Xy = x\z, where Xy, ---, X are the neighbors of x.

Page 409 shows an illustration of the sum-product algorithm applied
to a particular tree in Figure 8.51. Our goal is to get the marginal
distributions of the variable nodes. For that we designate one of the
nodes as the root, x3 in this case and locate the leaf nodes which are x
and x4 here. Then we compute all the messages from factor to variable
nodes and variable to factor nodes starting from the root to the leaves
and from leaves to root. In this example there are 3 variable to factor
messages and 3 factor to variable messages in leaf-to-root direction; 3
variable to factor and 3 factor to variable messages in root-to-leaves
direction. These messages are computed recursively and stored. Using
these we can get the marginal distributions of all the variable nodes,
which are

(1) = pfy—ay (T1)
P(r2) = pf, oy (T2) 1y (T2) gy (T2)
p($3) = Hfpy—zs (m3)

The required joint probablity distribution can be given by Table 1. As
can be seen, T that maximizes the marginal p(z) is given by x = 1
and y that maximizes the marginal p(y) is given by y = 1, and they
together have probability zero under the joint distribution.

(a) The max sum algorithm helps to find the value of the variables
which give the maximum probability of the distribution (joint or
marginal).

(b) The modified version of the algorithm computes the most prob-
able value of the node xy. We calculate the configuration of



Table 1: Joint probability distribution of two variables x and y each having
3 states.

State | y=0 | y=1 | y=2
x=0 0 [025] O
x=1025| 0 |0.25
x=2 0 [025] O

variables which correspond to the maximum of the joint proba-
bility distribution. This helps to calculate the global maximum
of the joint probability distribution.

(c) This modification is necessary because we want to calculate the
configuration values of the variables that correspond to the global
maximum of the joint probability distribution. There could be
multiple configuration of the variables that give rise to the max-
imum value of the probability. It is possible for the individual
variable values obtained by maximizing the product of messages
at each node to belong to different maximizing configurations
giving an overall configuration that no longer corresponds to a
maximum.
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