Solutions for Week S Problems
Compiled by John Nangle and Siou Lin

1. Solution by schlecht
Predicting whether or not a particular airline flight will be on time, and by how
much, is a very practical and important problem. For a particular flight, there are a
number of obvious factors that determine its punctuality; these include airline,
aircraft type, weather, departure location, ard arrival location. These factors are all
directly observable and should be available prior to the flight’s departure in most
cases. However, there is another factor that I believe influences how on-time a
flight is: the experience and goodness of its crew.

In my experience, some pilots are better than others at managing the affairs of
an on-time arrival, particularly in events of bad weather, delays, or mechanical
malfunction. I don’t believe it is necessarily true that a pilot with more experience
will be better than a lesser experienced one at punctuality. Because of this, I think
that the goodness of a pilot is not directly observable and acts as a latent variable
for explaining the differences between on-time arrivals.

My model would be as follows. Let X be the difference of the actual arrival
times for a set of V flights from their advertised times. The goal for a pilot is to
have these values zero. Let Y be the observable random events listed above, such as
weather, aircraft, efc. Finally, let Z be the skill of the pilot. The graphical model
representing the joint distribution over all these is given by




2. Solution by taralove
Deriving eq. 9.17: from eq. 9.16:
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Multiplying from the right by £, assuming it is not singular, and letting
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solution by Abhishek

To get (9.19), differentiate (9.14) wrt £ to get
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(2.4) will give expression for Iy as in 9.19.



Setting this to zero gives:
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which is eq. 9.19,

Deriving eq. 9.22: taking the derivative of eq. 9.20 with respect to m:
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Setting the above to zero and multiplying by ;. and

summing

over k, we get:
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since ) ,_, 7 = 1. Now only multiplying by 7 (without summing over k), we get:
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which is eq. 9.22.

3. Solution by mizhang
In this case, given p(#|X)
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So in the E step, similar to maximum likelihood situation, the latent variables Z is still given by
the posterior distribution p(Z|X,#), therefore this step remains the same.

In M step of evaluation of ™" since 3, p(X,Z) has nothing to do with #, it can be ignored. So
In{>", p(X,Z|6)p()} is left for evaluating. Similarly, according to equation (9.30) in the text, the
component to be evaluated is »_, p(Z|X,0°%) In(p(X, Z|#)) + In p(#)



4. Solution by icrk
By visually examining the input data, it is somewhat clear that there are three
clusters. T'wo strong clusterings at the bottom and one diffuse cluster at the
top.

Setting the number of clusters to K = 3 in EM produces the correct clus-
tering:
By sufficiently increasing the number of clusters it is possible that some clus-
ters will not have representative points. Trivially, if we have more clusters than
points, we can expect that while each cluster may have some responsibility to
one or more points, the points will be assigned to at most a number of clus-
ters that is equal to the number of points. Trivial case aside, it is possible to

have a number of clusters smaller than the number of data points and still have
clusters that are not represented. There are no guarantees that every cluster
will be the one with the highest probability for any point. So, while a cluster
may retain some responsibility for one or more points, it may lose out to other
clusters. Running EM with & = 20 shows that of the 20 clusters, only 5 or 6
are observed.

121

10F
o

_4 1 1 ) 1 1 1 1 ]
-8 5 -4 -2 0 2 4 E

Figure 2: Clustering input data.
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Figure 4: k=20 clustering.



My Matlab implementation of the EM algorithm is below, the log likelihood
output (each five iterations) is below that.

load -ascii data/ab_data.txt

Yinitialization

ot toto oo Joto fo o fo o toto 1o o oo o o Jo oo Fo o

k=3; %how many clusters
maxiter=100; how many iterations?

YM=moviein(maxiter) ;

hset(gca, ’NextPlot’, ’replacechildren’)
hrandomly assign data to clusters

for i=1:1000;

ab_data(i,3)=mod(i,k)+1;

end;

Ymean
mu_k=zeros(k,2);
for i=1:1000;



mu_k(cast(ab_data(i,3),’uint8’),1)=mu_k(cast(ab_data(i,3),’uint8’),1)+1;
end;

sum=zeros(k,2);
numthings=0;
temp_mu_k=zeros(k,2)
for i=1:3;
for j=1:1000;
if cast(ab_data(j,3), ’uint8’)==i;
sum(i,1)=sum(i,1)+ab_data(j,1);
sum(i,2)=sum(i,1)+ab_data(j,2);
numthings=numthings+1;
end;
end;
temp_mu_k(i,1)=sum(i,1)/nunthings;
temp_mu_k(i,2)=sum(i,2) /numthings;
end;
mu_k=temp_mu_k;

Ymixing coeff (a_1l,...,a_k) s.t. a_n=1000/k
for i=1:k;

pi_k(1)=1000/k;

end;

gamma_znk=zeros (1000,k) ;

for i=1:1000;
gamma_znk(i,cast(ab_data(i,3),’uint8’))=1;

end;

N_k=zeros(1,k);
for n=1:k;
for i=1:1000;
N_k(1,n)=N_k(1,n)+gamma_znk(i,n);
end;
end;

%covariance
sum=zeros (2)
for i=1:k;
for j=1:1000;
sum=sum+gamma_znk(j,i)*(ab_data(j,1:2)-mu_k(i,:)) ’*(ab_data(j,1:2)-mu_k(i,:));
end;
sigma_k(:,:,1)=(1/N_k(i))*sum;
end;

for iter=1:maxiter;
hExpectation

Totolonto o oo o tots totoh footods oo to oo odh
a=(1/(2%pi));



E_denom=0;
for i=1:1000;
for j=1:k;
E_denom=E_denom+(pi_k(j)*a*(1/(det(sigma_k(:,:,j))"(.5)))*
exp(-.5%((ab_data(i,1:2)-mu_k(j,:))*inv(sigma_k(:,:,j))*(ab_data(i,1:2)-mu_k{(j,:))’)));
end;
for j=1:k;
E_num=pi_k(j)*a*x(1/(det(sigma_k(:,:,j))~(.5)))*
exp(-.5*((ab_data(i,1:2)-mu_k(j,:))*inv(sigma_k(:,:,j))*(ab_data(i,1:2)-mu_k(j,:))?));
gamma_znk (i, j)=E_num/E_denom;
end;
E_denom=0;
end;
YMaximization
ot Todo ot ot to o to fo oo oo a fo o fo o o fo o
WN_k
N_k(1,:)=zeros(1,k);
for n=1:k;
for 1i=1:1000;
N_k(1,n)=N_k(1,n)+gamma_znk(i,n) ;
end;
end;

Ymu_k(k,2)
sum=zeros(1,2);
for i=1:k;
for j=1:1000;
sum=sum+(gamma_znk(j,i)*ab_data(j,1:2));
end;
mu_k(i,:)=(1/N_k(i))*sum;
sum=zeros(1,2);
end;

Ysigma_k
sum=zeros(2,2);
for i=1:k;
for j=1:1000;
sum=sum+gamma_znk(j,1)*((ab_data(j,1:2)-mu_k(i,:)) ’*(ab_data(j,1:2)-mu_k(i,:)));
end;
sigma_k(:,:,1)=(1/N_k(i))*sum;
sum=zeros(2,2);
end;

for i=1:k;
pi_k(i)=N_k(i)/1000;

end;

%Log likelihood



a=1/(2x*pi);
sum=0;
LL=0;
for i=1:1000;
for j=1:k;
sun=sum+ (pi_k(j)*a*(1/(det(sigma_k(:,:,j))"(.5)))*
exp(-.5*(ab_data(i,1:2)-mu_k(j,:))*inv(sigma_k(:,:,j))*(ab_data(i,1:2)-mu_k{(j,:))’));
end;
LL=LL+log(sum);
sum=0;
end;

LL

WM(iter)=getframe;
end;

hsince k=3, use gamma to blend
scatter(ab_data(:,1), ab_data(:,2), 20, gamma_znk, ’filled’)

Iteration | Log Likelihood
1 -4.7355e+03
5 -4.5372e+03
10 -4.5140e+03
15 -4.5097e+03
20 -4.5067e+03
25 -4.503%+03
30 -4.5026e+03
35 -4.5020e+03
40 -4.5015e+03
45 -4.5005e+03
50 -4.4976e+03
55 -4.4916e+03
60 -4.4752e+03
65 -4.4099e+03
70 -4.3318e+03
75 -4.327Te+03
80 -4.3275e+03
85 -4.3275e+03
90 -4.3275e+03
95 -4.3275e+03
100 -4.3275e+03




