Problem 1 is courtesy of Prasad.

1. Taking the expectation of (11.2)
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since each z ¥ 1s chosen independently from p(z ).

Equation (11.3) can be proved using the facts:

a) If T = a.X then Var(T) = a*Var ()

b) If ¥} are independent and 1" = 3, X; then Var (1) = 3, Var (13)
Taking the variance of (11.2)

1

Var[f] = I

S Var T 7z O
Z}Ear[_n\z 1]

1
= E.:.E.‘-;'al'[ﬂ

1 5
= E|(f-EL




Problem 2 is courtesy of Ernesto.

2.

(a)

(h)

(c)

The blue curve in figure 11.2 is called the cumulative distribution
function (CDF) of the random variable .

In order to sample from the red distribution, we must sample
numbers from the vertical axis uniformly between 0 and 1. We
then draw a horizontal line and see where this horizontal line
intersects the blue curve (the CDF of y), and take the y-value
(the horizontal value in the figure) of that point of intersection
as our sample point.

Meore of the samples will end up near the peaks of the red curve
becanse where the red curve has peaks, the blue curve grows
rapidly, which means it takes up more vertical space per unit of
horizontal space. Since the vertical axis values are being sampled
uniformly, there is a higher chance that the horizontal values will
end up in the places where the blue curve grows rapidly.

To show that 11.5 is true, we must show that the PDF of y is
given by pl(= | | Let F(z) be the CDF of = and €(y) be the
CDF of y. .bll(‘h thth Flzg) = Plz < zp) and Qlyg) = Ply = va).
Remembering that y = f(z), we h-_'l"ve

Qlwo) = Ply = wo
= P(f(2) < w)
=P(z < /" (w))
= Flzn).
where we have used = = f~1(y). Since it is the PDF of y that we

are interested in, we must take the derivative of ¢} in order to get
it. Thus

If we call the PDF of y p(y) (only because the author does it),
and if £ is strictly increasing (so is f=1), we get the desired result
dz

ply) = plz)
a’z.r




Problem 3 is courtesy of Abhishek.

3) PRML 11.2) Suppose z ~ Unif(0,1) and y = h=Y(z). Show that y ~ p(y).
ans

So y has edf i(.), hence y ~ p(y).

Problem 4 is courtesy of Prasad.

4. Letus begin by derniving equation 11,45 Consider the acceptance probability for
each step of the Metropelis-Hastings algorithm

o pza(zlz”)
Az ,z}—mm{Lm)

Multiplying both sides by p(z )g{z |z ). which amounts to multiplving either the
first or the second argument of the min function whichever is smaller. This de-
duces to

p(z)gz'lz)d(z".z) = mmn(p(z)g(z|z"). p(z)g(z"lz))

By the symmetry of z and z”, we can interchange the two and write equation
11.45

min(p(z)g(z|z"). p(z)g(z’z))
min(p(z)g(z’lz). p(z")g(z1z"))
p(z")g(zlz")4(z .2")

which implies that the Markov chain formed by the samples of the MH algo-

rithm has p{z) as its stationary distribution and the transition probabilities of
the Markov chain are given by Ti(z'.z) = g(zlz")4(z.z"). In order to make it

p(z)g(z'lz)4(z".2)



Problem 5 is courtesy of Abhishek.

5) Show that the MCMC sampling is ergodic.

ans Let the intial sample be from some probability distribution rg(x) and
the Markov Chain has stationary distribution w(x). Let us show that the
distribution at time n can be expressed as:

palr)=(1—(1—v)")w(z) + (1 —v)"ralz) (5.1)

where v € (0,1) and r,(xr) is a probability distribution.
To prove (5.1), we use induction on n.
When n = 0, (5.1) says

polx) = ro(x)
which 15 true by assumption. Suppose (5.1) holds for n = 1,2,..., N. Want
to show that it holds for n = N +1. Using the definition of transition funection
as in 11.38, we can get pyy(x) from py(x) as follows:

pral(r) =) pv(a) (' x) (5.2)
Substitute the expression of py(z) from (5.1) into (5.2) to get
pvalz) = [(1= (1= v)M)a(a’) + (1= v)Vry (")) T(o/,x) (5.3)
= (1 —(1— U:IN) Z m(z"\T(2',x) + (1 — ) Z ry () T(', ) (5.4)
=(1-(1- U:IN) w(x) 4+ (1 —v)V Z (2 ) T2 ) (5.5)
il

=(1-1=)")a(@) + (1= 1 =0)") a(2) = (1= (1= )"+ n(2)
H1=v)¥ Y ry(a)T(2', ) (5.6)

— (1 —(1— v]‘m’l) m(r)—v(l— U]N?r[;r] +(1-— r/]NZ r,n.;(;r’]Tl[;r’,;r]
(5.7)
= (1 —(1— U:IN-H') m(r)+(1— U]N“ T i y ;rp;(;r’]']"[;r’, ) — 7 E V?I’I{I]
(5.8)
=(1-(1 =" x(z)+ (1 —v)"ryp(r) (5.9)

To get (5.5) from (5.4), I used the fact that 7 is a stationary distribution for
the MC. In (5.9), ryy1(x) has the expression
1
rvi(z) = ——) rn(a’)T(2' x) -

S l—v

1/

2 T Um[.r) (5.10)



We need to show that this defines a probahility distribution for suitable
choice of . Y,y (2’ )Tz, x) defines a probability distribution over x (that
is the distribution of it xx has distribution ry(x)), so does w{x). Hence
ry 41l o) is a weighted sum of two probability distributions, the weights adding

up to 1, so
> rna(z) =1

T

Remains to show that vy (x) = 0 for all x. That is equivalent to showing

> ry(a")T(a!,x) = va(x) (5.10)
il

For that assume T'(x', x) = 0 for all =, z; and
m = infT(z" . x) =0
T,

Then
S ()T 2) 2 m S ry(a’) = m

So if v < m, then

vr(z) <v<m< Z r(x )T (2", x)
=

which proves (5.10). Hence by induction, we have proved (5.1). Then from
(5.1)

[m(x) — palx)| = (1 —v)"w(z) — (1 — v)"ra(x)]
= (1 =v)"|m(z) = ralx)]
< (1—v)" (5.11)

Since we choose 0 < v < 1, (5.11) converges to 0 as n — oo, which means
pnlr) — m{x). The inequality in (5.11) and the bound m on v suggest
that closer the transition probahilities are to 1, faster will be the rate of
CONVETZence.



